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Introduction

Algebraic geometry is concerned with the study of those geometric objects
that can be represented as the solutions of a multivariate polynomial system.
It is a central branch of mathematics having connections to various other
subfields, and its modern areas of research study the geometric objects by
constructing more complex algebraic structures on them.
In this manuscript, we are interested in the applications of algebraic geom-
etry to cryptography, in particular to post-quantum cryptography (PQC).
One of the main reasons to draw attention toward PQC is the algorithm
of Shor [81]. Because of it, all the public key cryptosystems based on the
difficulty of the discrete logarithm or integer factorization problems became
vulnerable to polynomial-time attacks by quantum computers. Moreover,
a competition organized by the United States government agency National
Institute of Standards and Technology (NIST) for new post-quantum cryp-
tographic algorithms [66] and its recent third selection round show the
flourishing interest in the area of post-quantum cryptography. Partici-
pants of the competition can be categorized into lattice-based, code-based,
multivariate, hash-based, [11] and isogeny based cryptography. Most of
these cryptographic constructions use techniques from algebraic geometry,
thereby proving its efficacy in post-quantum cryptography.
In this work, we review some topics related to isogeny based cryptography,
and initiate the study of Veronese variety and Grassmannian in the context
of post-quantum cryptography. Our study is structured in two parts. The
first part is related to the isogeny problems and the second part is devoted
to new key exchange and signature protocols based on hard problems
occurred in Veronese variety and secant variety of the Grassmannian.
Isogeny based cryptography is appealing in the area of post-quantum cryp-
tography because of its relatively small key size and underlying beautiful
mathematical theory. Many variants of the isogeny problems are used in
many existing primitives [56, 18, 21, 51, 46]. There are two main hard prob-
lems in isogeny based schemes: finding an isogeny between two elliptic
curves and computing the endomorphism ring of an elliptic curve. These
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two problems are related to each other [59] and there is no sub-exponential
algorithm to solve them for supersingular elliptic curves [72]. The compu-
tation of a single endomorphism of an elliptic curve E is also closely related
to the problem of computing the endomorphism ring of E [58].

Chapter organization and main contributions: In Chapters 1 and 2,
we give some preliminaries that will be used in the later chapters. Chapter
1 is mainly related to Chapters 3 and 4, and Chapter 2 provides a back-
ground for Chapter 5. Chapter 6 is more or less self-contained.
In Chapter 3, we study an endomorphism computation problem for a super-
singular elliptic curve defined over a finite field Fp under the assumption
that the action of the endomorphism is known on a torsion subgroup of
the elliptic curve. This problem was first posed in [71], where it is reduced
to that of solving a Diophantine equation. We use Simon’s algorithm [84]
to solve such a quadratic equation. We also use a technique from [61] to
improve the size of the parameters under some heuristic assumptions.
In Chapter 4, we study the action of the class group of an imaginary
quadratic order O on the set of elliptic curves with complex multiplica-
tion by O. This action has been used to construct several cryptosystems
based on isogenies for example [19, 75, 87, 31]. Classical genus theory
gives the structure of the 2-torsion subgroup of the class group of O via
some non-trivial quadratic characters. In [20], an interesting connection
between genus theory and isogeny graphs was discovered, and was used
to break the analogue of the decisional Diffie-Hellman problem for some
isogeny-based cryptosystems. In this work, we restrict our attention to the
values of the non-trivial characters in the 2-torsion subgroup of the class
group cl(OK) of a maximal order OK of an imaginary quadratic field K
and observe how these values give colorings in some Cayley and isogeny
graphs obtained from the 2-torsion subgroup cl(OK)[2] of cl(OK).

In Chapter 5, we propose a new key exchange scheme that we call
Quadratic Surface Intersection (QSI) key exchange, joint work with Daniele
Di Tullio. We give a naive implementation of the algorithm in the SageMath
[35]. We claim hardness of the underlying mathematical problems through
empirical evidence.

In Chapter 6, we propose a new signature scheme from the secant variety
of the Grassmannian, which is also a joint work with Daniele Di Tullio. This
scheme resembles multivariate signature schemes such as [38, 57]. We give
an abstract description of the scheme and justify the underlying problem
by means of some experimental evidences. We implemented our algorithm
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in SageMath [35].
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Chapter 1

An introduction to isogeny based
post-quantum cryptography

1.1 Overview

Cryptography is a study of methods that deals with secure means of com-
munication between any parties being aware of adversaries. Such a secure
communication can be achieved by encryption and decryption of message.
A message, which is also called plaintext, is encrypted by an algorithm us-
ing some keys then the encrypted message called ciphertext is sent through
an insecure channel. Upon receiving the ciphertext, an algorithm decrypts
it with the help of some keys to recover the original message. Encryption
algorithms should be strong enough to protect private data from malicious
adversaries. At the same time, these algorithms should require a reasonable
amount of time and memory to be useful for practical purposes.
To meet the security necessities of the present world, many cryptographic
schemes have appeared in the literature. These range from private key cryp-
tography, where sender and receiver both have the same keys, to public-key
cryptography, where the sender uses the public keys of the receiver to en-
crypt the message and the receiver retrieves the message by using her/his
private keys. Furthermore, a new area of research in cryptography has been
carried out extensively, called post-quantum cryptography(PQC).
In this chapter, we mainly discuss some preliminaries of isogeny based
cryptography, some of the isogeny schemes, and some of the possible
attacks on these schemes.
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12 CHAPTER 1. ISOGENY BASED CRYPTOGRAPHY

1.2 Elliptic curve, isogeny and endomorphism ring

There are good references for elliptic curve, isogeny [48, 82, 83, 88, 94] and
their application to isogeny based cryptography [29]. We arrange some
of the contents from these references that are useful in the isogeny based
cryptography.

1.2.1 Elliptic curve

Suppose κ be a perfect field, a field whose every algebraic extension is
separable, for example, the finite fields. Let κ̄ be its algebraic closure. For
cryptographic application, we take κ = Fq, a finite field of q elements.
We will define an elliptic curve as a smooth projective variety. Before that,
it is worthwhile to recall some notions of projective space, variety, and
dimension.

Definition 1.2.1. The n dimensional projective space is defined as

Pn
κ̄ = (κ̄n+1 \ 0)/ ∼,

where 0 is a zero vector in κn+1 and the equivalence relation ∼ on κ̄n+1 is defined
as

(x0, ..., xn) ∼ (y0, ..., yn) ⇐⇒ ∃λ ∈ κ̄∗ = κ̄ \ {0} s.t. xi = λyi ∀ i = 0, . . . , n

and an equivalence class is denoted by [x0 : ... : xn] which is called the homo-
geneous coordinate of Pn

κ̄ . The set of κ-rational points in Pn
κ̄ is defined to be the

set
Pn

κ = {P ∈ Pn
κ̄ : σ(P) = P ∀ σ ∈ Gκ̄/κ},

where Gκ̄/κ is the Galois group which acts on Pn
κ̄ as follows

σ([x0 : ... : xn]) = [σ(x0) : ... : σ(xn)] for σ ∈ Gκ̄/κ.

The n-dimensional affine space An
κ̄ = κ̄n can be identified by the follow-

ing inclusion

An
κ̄ Pn

κ̄

(x1, . . . , xn) [x1 : x2 : . . . : xi−1 : 1 : xi+1 : . . . : xn]

for each 0 ≤ i ≤ n. In fact, there is a bijection between the sets

Ui = {[x0 : . . . : xn] ∈ Pn
κ̄ : xi 6= 0} ⊂ Pn

κ̄ and An
κ̄ ,
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where the inverse map from Ui to An
κ̄ is given by

[x0 : . . . : xn] 7→
(

x0

xi
,

x1

xi
, . . . ,

xi−1

xi
,

xi+1

xi
, . . . ,

xn

xi

)
.

In a projective space, homogeneous polynomials are the well-defined
polynomials. A polynomial G ∈ κ̄[x] = κ̄[x0, . . . , xn], where κ̄[x] is a
polynomial ring in variables x0, . . . , xn, is called the homogeneous polynomial
of degree d if

G(λx0, . . . , λxn) = λdG(x0, . . . , xn) ∀ λ ∈ κ̄.

Such a polynomial G has well-defined zeros in the homogeneous coor-
dinates. An ideal I ⊂ κ̄[x] is called homogeneous if all the generating
polynomial of I are homogeneous polynomials.
For any given polynomial in an affine space, we can convert it to a homo-
geneous polynomial and vice versa.

Definition 1.2.2. For a polynomial g ∈ κ̄[x0, . . . , xi−1, xi+1, . . . , xn] of degree d,
the homogenization of g by xi is the polynomial G given by

G(x0, . . . , xn) = xd
i g
(

x0

xi
,

x1

xi
, . . . ,

xi−1

xi
,

xi+1

xi
, . . . ,

xn

xi

)
and conversely, the dehomogenization of any homogeneous polynomial G ∈ κ̄[x]
by xi is the polynomial g obtained as

g(x0, . . . , xi−1, xi+1, . . . , xn) = G(x0, . . . , xi−1, 1, xi+1, . . . , xn).

The solution set of an ideal of polynomials is defined as an algebraic set.

Definition 1.2.3. An affine algebraic set is a set of the form

VI = {P ∈ An
κ̄ : g(P) = 0 ∀ g ∈ I},

where I ⊂ κ̄[x1, . . . , xn] is an ideal. An affine algebraic set VI is called an affine
variety if the ideal I is a prime ideal in κ̄[x1, . . . , xn]. If V is affine algebraic set,
then the ideal of V is defined as IV = {g ∈ κ̄[x1, . . . , xn] : g(P) = 0 ∀ P ∈ V}.

Polynomials or rational functions on any variety constitute the coordi-
nate ring and the function field of the variety respectively.
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Definition 1.2.4. An affine algebraic set V ⊂ An
κ̄ is said to be defined over a field

κ and written as V/κ if its ideal is generated by polynomials whose coefficients
lie in κ. The affine coordinate ring of V/κ is denoted as κ[V] and is defined as the
quotient κ[V] = κ[x0,...,xn]

IV
. Similarly, κ̄[V] = κ̄[x0,...,xn]

IV
.

If V is a variety, the quotient κ[V] = κ[x0,...,xn]
IV

is an integral domain and
we can define its fraction field. The function field of an affine variety V/κ
is denoted as κ(V) and is the field of fraction of the coordinate ring κ[V].
Similar definition works if we replace κ by κ̄.

Definition 1.2.5. The field extension κ̄(V)/κ̄ is transcendental over κ̄ and its
degree is the dimension of an affine variety V.

Variety may contain both singular and nonsingular points. We are
interested in a variety not containing the singular points.

Definition 1.2.6. Let V be an affine variety and g1, . . . , gm ∈ κ̄[x1, . . . , xn] are
generators of IV then V is called nonsingular at a point P ∈ V if the m × n
Jacobian matrix A = (ai,j)1≤i≤m,1≤j≤n with

ai,j =
∂gi

∂xj
(P)

has rank n-dimV, otherwise P is singular point of V. If all the points of V are
nonsingular then V is called smooth.

There is a similar definition for algebraic projective variety where we
take homogeneous polynomial and homogeneous ideal.

Definition 1.2.7. Any set of the form

VI = {P ∈ Pn
κ̄ : G(P) = 0 ∀ homogeneous polynomial G ∈ I},

where I is a homogeneous ideal, is called a projective algebraic set. Given a
projective set V, the ideal of V is denoted as IV and is given by

IV = {G ∈ κ̄[x] : G is homogeneous and G(P) = 0 ∀ P ∈ V}.

Definition 1.2.8. A projective variety is a projective algebraic set whose homoge-
neous ideal IV is a prime ideal in κ̄[x].

Simple examples of projective varieties are the ones defined by linear
equations.
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Definition 1.2.9. A linear subspace L ⊂ Pn
κ̄ is a projective variety defined

by homogeneous polynomials of degree 1. The codimension of L, denoted by
codimPn

κ̄
(L), can be defined as the minimum number of generators of the ideal IL.

Other easy examples of projective algebraic sets are the varieties cut by
one equation.

Definition 1.2.10. A hypersurface is a projective algebraic set V ⊂ Pn
κ̄ defined

by a single equation F(X0, ..., Xn) = 0.

Projective variety and its properties can be identified by looking at its
affine parts.

Definition 1.2.11. Let V be a projective variety with homogeneous ideal IV =
(G1, . . . , Gm). Then affine parts of V are the varieties Vi = V ∩ Ui, where
Ui = {[x0 : . . . : xn] ∈ Pn

κ̄ : xi 6= 0} for all i. The ideal of Vi is generated by the
polynomials obtained by dehomogenization of Gi at xi for all i and V =

⋃
i Vi. The

dimension of the projective variety V is the maximum of the dimension of its affine
parts Vi, and is smooth if and only if all of its affine parts are smooth.

For a projective variety, the function field κ(V) or κ̄(V) is defined as
the function field of its affine part κ(Vi) or κ̄(Vi) for some fixed i after
homogenizing each elements. Therefore, the function field of a projective
variety V is the field of the rational functions G = f /h such that :

• f and h are homogeneous of the same degree;

• h 6∈ IV

• with an equivalence relation f1/h1 ∼ f2/h2 if f1h2 − f2g1 ∈ IV .

Any function G ∈ κ̄(V) is regular or defined at a point P ∈ V if G = f /h for
some f , h ∈ κ̄[V] with h(P) 6= 0. We define rational map between projective
varieties and its regularity at points.

Definition 1.2.12. Let V1, V2 ∈ Pn be projective varieties. A rational map
φ : V1 → V2 is of the form

φ = [G0 : . . . : Gn],

where the functions G0, . . . Gn ∈ κ̄(V1) satisfy

φ(P) = [G0(P) : . . . : Gn(P)] ∈ V2
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for each point P ∈ V1 at which all G0, . . . , Gn are well defined. Moreover, φ is
regular (or defined) at P ∈ V1 if there exists a function g ∈ κ̄(V1) such that each
gGi is regular at P and gGi(P) 6= 0 for some i. In this case,

φ(P) = [(gG0)(P) : . . . : (gGn)(P)].

A rational map that is regular at every point is called a morphism.

Note that a rational function φ = [G0 : . . . : Gn] is defined only up to a
scaling by a function in κ̄(V1)

∗.
Now we define a projective variety of our interest. An algebraic curve is a
projective variety of dimension one. An elliptic curve can be defined as
a smooth projective variety having a group structure and is defined by a
single homogeneous equation.

Definition 1.2.13. Elliptic curve E can be defined as an abelian variety of dimen-
sion one, where an abelian variety is a smooth projective variety with a marked
point O having the group structure given by rational maps and O is an identity
element.

With this definition, an elliptic curve has both algebraic and geometric
structure therefore it can be treated algebraically as an abelian group and
geometrically as a smooth projective curve. To make a discussion precise,
we consider the Weierstrass form of an elliptic curve and see it as an abelian
variety. An elliptic curve can equivalently be defined as a nonsingular
curve defined by the Weierstrass equation 1.1 see in [65].

Definition 1.2.14. (Weierstrass form). Let κ be a field, then an elliptic curve E
defined over κ is the set of solutions [X : Y : Z] ∈ P2

κ̄ of the following general
Weierstrass equation

Y2Z + c1XYZ + c3YZ2 = X3 + c2X2Z + c4XZ2 + c6Z3, (1.1)

with c1, c2, c3, c4, c6 ∈ κ and ∆ 6= 0 where

∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

d2 = c2
1 + 4c2

d4 = 2c4 + c1c3

d6 = c2
3 + 4c6

d8 = c2
1c6 + 4c2c6 − c1c3c4 + c2c2

3 − c2
4.

Curve defined by Equation 1.1 meets the line of infinity Z = 0 at the
point O = [0 : 1 : 0] with multiplicity 3, and the point O is called the point
at infinity. The quantity j(E) = (d2

2 − 24d4)
3/∆ is called the j-invariant of

the elliptic curve E.
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Theorem 1.2.15. 1. Weierstrass equation 1.1 defines a nonsingular elliptic
curve if and only if ∆ 6= 0.

2. Two elliptic curves over κ are isomorphic over κ̄ if and only if they have the
same j-invariant.

3. Every jE ∈ κ̄ there exists an elliptic curve E defined over the field κ(jE) such
that j(E) = jE.

Proof. See in [82, Proposition 1.4].

If characteristic of the field κ is not 2 or 3 then the affine form of Equation
(1.1) can be transformed into the following short Weierstrass form

y2 = x3 + Ax + B (1.2)

and hence the discriminant and the j-invariant reduce to ∆ = −16(4A3 +

27B2) and j = −1728 (4A)3

∆ respectively.
Moreover, elliptic curve E over κ can be defined as

{(x, y) ∈ κ̄2 : y2 = x3 + Ax + B} ∪ {O}

and for a field extension κ ⊂ K, the K-rational points of E constitute the set

E(K) = {(x, y) ∈ K2 : y2 = x3 + Ax + B with A, B ∈ κ} ∪ {O}.

We define a composition law on the Weierstrass form of elliptic curve E,
which gives a group structure with identity O. We need the Bézout’s theo-
rem to define the composition law.

Bézout’s theorem: Let F(X, Y, Z), G(X, Y, Z) ∈ κ̄[X, Y, Z] be two ho-
mogeneous polynomials of degree m and n respectively without having
a common factor then they intersect at mn points defined over κ̄ counted
with multiplicities.

Composition law on E: Let P, Q ∈ E be two points, consider a line
L1 passing through P and Q ( it will be tangent if P = Q) then L1 meets
E at one more point say R by Bézout’s theorem. Join again R and O by
another line L2 to get one more intersecting point with E say P + Q, which
is defined as the composition of P and Q. See Figure 1.1 when E is defined
over the real numbers.
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Figure 1.1: Composition law on elliptic curve over the real number R

With the composition law above, E becomes an abelian group.

Theorem 1.2.16. The elliptic curve E is an abelian group under the composition
′+′ with the identity element O. Let P = (x1, y1) and Q = (x2, y2) be any
two non-identity points on the elliptic curve given by the affine form of the short
Weierstrass equation E : y2 = x3 + Ax + B. Then the group operation is given
explicitly by the following formula

• Inverse of any element P is −P = (x1,−y1).

• Let P + Q = R := (x3, y3) where

x3 = λ2 − x1 − x2

y3 = −λx3 − y1 + λx1,

and

λ =

{ y2−y1
x2−x1

if P 6= Q
3x2

1+A
2y1

if P = Q.

Proof. See in [82].

When an elliptic curve is defined over a finite field then its cardinality
and group structure can be determined.

Theorem 1.2.17. (Hasse) Let E be an elliptic curve defined over a finite field Fq.
Then the number of Fq-rational points #E(Fq) of E is bounded as

|#E(Fq)− q− 1| ≤ 2
√

q.
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Proof. See in [94].

The following theorem gives the group structure of an elliptic curve
defined over a finite field.

Theorem 1.2.18. Let p be a prime and q = pn and N = q + 1− t. Then there is
an elliptic curve defined over Fq such that |E(Fq)| = N if and only if |t| ≤ 2

√
q

and t satisfies the following

1. gcd(t, p) = 1

2. n is even and t = ±2
√

q

3. n is even, p 6≡ 1 (mod 3), and t = ±√q

4. n is odd, p = 2 or 3, and t = ±p(n+1)/2

5. n is even, p 6≡ 1( mod 4), and t = 0

6. n is odd and t = 0.

If we have N = p`n1n2 with p - n1n2 and n1|n2 then there is an elliptic curve E
defined over Fq such that

E(Fq) ' Z/p`Z⊕Z/n1Z⊕Z/n2Z

if and only if either n1|q− 1 in case (1), (3), (4), (5), (6) or n1 = n2 in the case
(2). These are the only possible classifications of E(Fq).

Proof. See in [95] for the first part and in [74] for the second part.

1.2.2 Isogenies between elliptic curves

Definition 1.2.19. Let E0, E be elliptic curves defined over a field κ. An isogeny
φ : E0 → E is a non-constant morphism which sends the identity element of E0 to
the identity element of E.

Since a morphism between projective curves is either surjective or con-
stant, an isogeny between elliptic curves is a surjective rational map pre-
serving the identity elements.
We define the degree of an isogeny.
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Definition 1.2.20. Let E1/κ and E2/κ be elliptic curves defined over a field κ
and φ : E1 → E2 be an isogeny. This isogeny induces an injection of function
fields that fixes κ,

φ∗ : κ(E2)→ κ(E1), φ∗ f = f ◦ φ

and κ(E1)/φ∗κ(E2) is a finite extension. Then, the degree of φ is defined as

deg φ := [κ(E1) : φ∗κ(E2)]

and φ is called separable, inseparable, or purely inseparable if the field extension
κ(E1)/φ∗κ(E2) is respectively separable, inseparable, or purely inseparable. The
separable and inseparable degrees of φ are denoted as degs φ and degi φ respec-
tively.

The degree of an isogeny is the product of its separable and insepara-
ble degrees i.e. deg φ = degs φ degi φ. Simple examples of isogenies are
multiplication by integers. For each m ∈ Z∗ the multiplication of m map
[m] : E→ E defined as

[m](P) =

{
P + . . . + P for m > 0
[−m](−P) for m < 0

are isogenies from E to E.

For each isogeny, there is a corresponding dual isogeny.

Theorem 1.2.21. Let φ : E1 → E2 be an isogeny of degree m. Then there exists
a unique isogeny φ̂ called dual isogeny which satisfies φ̂ ◦ φ = [m] on E1 and
φ ◦ φ̂ = [m] on E2. Furthermore,

• deg φ̂ = deg φ.

• ˆ̂φ = φ

• For all m ∈ Z,

ˆ[m] = [m], for m = 0 set ˆ[0] = [0]

• Let ψ : E1 → E2 be another isogeny, then

φ̂ + ψ = φ̂ + ψ̂
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• Let φ1 : E2 → E3 be another isogeny, then

φ̂1 ◦ φ = φ̂ ◦ φ̂1.

Proof. See in [82, Theorem 6.2].

The kernel of the multiplication by m map [m] : E→ E is the subgroup

E[m] := {P ∈ E(κ̄) : mP = 0}

called the m-torsion subgroup of E.
The structure of m torsion subgroup E[m] is given by the following

theorem.

Theorem 1.2.22. Let E be an elliptic curve defined over a field κ and let m ∈ Z∗.

• If either char(κ) = 0 or char (κ) = p > 0 and p - m then

E[m] = Z/mZ⊕Z/mZ.

• If char (κ) = p > 0 then either

E[pi] = {O} or E[pi] = Z/piZ for all i ∈N.

Proof. See in [82, Corollary 6.4].

Elliptic curve E over a finite field Fq with q = pr can be classified as
ordinary or supersingular according to the structure of the p torsion subgroup
of E; E is called ordinary if E[p] ∼= Z/pZ and is called supersingular if
E[p] = {0}.
A supersingular elliptic curve defined over a field of non-zero characteristic
p has an isomorphic copy that is defined over a quadratic extension of Fp,
and hence all such curves can be enumerated.

Theorem 1.2.23. Let E be a supersingular elliptic curve defined over a field κ of
characteristic p > 0. Then the j-invariant of E belongs to Fp2 . For p ≥ 5, the
number of all supersingular elliptic curves defined over Fp is

⌊ p
12

⌋
+


0 if p ≡ 1 (mod 12)
1 if p ≡ 5, 7 (mod 12)
2 if p ≡ 11 (mod 12).

Proof. [94, Corollary 4.40].
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Two elliptic curves are called isogenous if there is an isogeny between
them. The following theorem shows that ordinary elliptic curves are isoge-
nous to only ordinary elliptic curves, and the same is true for supersingular
elliptic curves.

Theorem 1.2.24. Let φ : E1 → E2 be an isogeny of elliptic curves. Then E1 is
ordinary if and only if E2 is ordinary or equivalently E1 is supersingular if and
only if E2 is supersingular.

Proof. See in the lecture note of Sutherland [88, Lecture 14, Theorem 14.2].

As we have observed, the kernel of multiplication by m map is the
m-torsion subgroup E[m], which is a finite subgroup of E. The kernel of an
isogeny is finite and it gives a unique separable isogeny.

Theorem 1.2.25. Let φ : E1 → E2 be an isogeny. Then the kernel of φ is finite
and its number of elements is equal to the separable degree of φ.

Proof. See in [82, Theorem 4.10].

Conversely, for any finite subgroup of an elliptic curve, there exists a
unique separable isogeny of kernel from that subgroup.

Theorem 1.2.26. Let E be an elliptic curve over a field κ and G be a finite subgroup
of E whose order is coprime with the characteristic of κ. Then, there exists an
elliptic curve E

′
and a separable isogeny φ : E→ E

′
up to isomorphism such that

ker φ = G.

Proof. See in [82, Proposition 4.12].

Any isogeny from a kernel can be explicitly calculated by the Velú’s
formula [93]. Using Theorem 1.2.26 repeatedly, any isogeny can be written
as the composition of prime degree isogenies.

Endomorphisms are the isogenies from an elliptic curve to itself. We also
include zero morphism, denoted by [0] and considering its degree as 0, in
the following set

End(E) = { isogenies φ : E→ E} ∪ {[0]}.

For P ∈ E, sum and multiplication of two elements φ, ψ ∈ End (E) are
defined respectively as

(φ + ψ)(P) =φ(P) + ψ(P)
(φψ)(P) =φ(ψ(P)).
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The set End(E) is a ring by the following theorem and is called the endomor-
phism ring of E. We will see that it is an invariant of E that classifies it as
ordinary or supersingular.

Theorem 1.2.27. Let E be an elliptic curve. Then the endomorphism ring End(E)
is a ring of characteristic zero with no zero divisors.

Proof. See in [82, Proposition 4.2(c)].

The above theorem shows that End(E) is an integral domain.

There is an important endomorphism called Frobenius endomorphism
when elliptic curve is defined over a finite field.

Frobenius Endomorphism:

Let E be an elliptic curve defined over a field κ of characteristic p > 0
and q = pr. Let E(q) be the elliptic curve whose equation is obtained by
raising the coefficients of E to the q-th power. Then there is the natural map
πq : E→ E(q) called q-th power Frobenius map which is given by

πq : [x : y : z]→ [xq : yq : zq].

Theorem 1.2.28. Let E an elliptic curve over a field κ = Fq of characteristic
p > 0 with q = pr and πq : E→ E(q) be the q-th power Frobenius map then

• πq is purely inseparable.

• deg πq is q.

• Every isogeny φ : E1 → E2 between the elliptic curve over κ can be factored
as φ = φ1 ◦ πq :

E1
πq−→ E(q)

1
φ1−→ E2,

where q is the inseparable degree of φ and φ1 is a separable isogeny.

Proof. See in [82, Proposition 2.11 and Corollary 2.12].

When an elliptic curve is defined over Fq then E(q) = E and πq is an
endomorphism of E called the Frobenius endomorphism of E.

Theorem 1.2.29. Let E be an elliptic curve defined over a field Fq with q = pr.
Let πq be the Frobenius endomorphism of E. Then the map

m1 + m2πq : E→ E

for m1, m2 ∈ Z is separable if any only if p does not divide m1 .

Proof. See in [82, Corollary 5.5].
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1.2.3 Endomorphism algebra

Let E be an elliptic curve defined over a field κ. We know that the endo-
morphism ring End(E) is a ring, so it is also a Z algebra. The endomorphism
algebra of E is denoted by End0(E) and is defined as

End0(E) := End(E)⊗Z Q,

where Q is the set of rational numbers. Since both End(E) and Q are torsion-
free Z algebras, they are identified canonically (with canonical embeddings
φ 7→ φ⊗ 1 and α 7→ 1⊗ α resp., for φ ∈ End(E) and α ∈ Q) as the subrings
of the algebra End0(E).

Definition 1.2.30. For µ ∈ End0(E), set φ⊗ s = sφ for φ ∈ End(E) and s ∈ Q.
Define

• ŝµ = sµ̂,

• reduced norm of µ is N(µ) = µµ̂,

• trace of µ is Tr(µ) = µ + µ̂.

It is not hard to show that End0(E) is a division ring. The classification of
End0(E) gives the classification of the ring End(E). Before the classification
of End0(E), we define quaternion algebra.

Definition 1.2.31. A quaternion algebra is a Q-algebra with basis {1, a, b, ab}
satisfying

a2, b2 ∈ Q, a2 < 0, b2 < 0 and ab = −ba.

Theorem 1.2.32. Let E be an elliptic curve over a field κ. Then the endomorphism
algebra End0(E) is isomorphic to one of the following

• the field of rational number Q

• a quadratic field Q(a) with a2 < 0

• a quaternion algebra Q(a, b) with a2, b2 < 0.

Furthermore, if End0(E) has dimension d = 1, 2, 4 as a Q vector space then
End(E) has rank d as a free Z module.

Proof. See in [88, Theorem 13.17].
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The endomorphism ring End(E) is situated in End0(E) not only as a lat-
tice (free module of maximum rank) but also as a subring. For ordinary case,
the following theorem gives the precise information of the endomorphism
ring.

Theorem 1.2.33. Let E be an ordinary elliptic curve over the field Fq. Then
End0(E) = Q(πq) ∼= Q(

√
dπ) is an imaginary quadratic field, where dπ =

(Tr πq)2 − 4q is the discriminant of the characteristic polynomial of πq.

Proof. See in [88, Corollary 14.7].

For ordinary curve, the endomorphism algebra (an isomorphic copy)
can be calculated if the trace of the Frobenius is known, the trace is calcu-
lated by Schoof’s algorithm. From Theorem 1.2.32, End(E) is an order in
the imaginary quadratic field K = Q(

√
dπ) and

Z[πq] ⊂ End(E) ⊂ OK,

where OK is the maximal order of K, giving only finite number of possibili-
ties for End(E).

For a supersingular elliptic curve, endomorphism ring is non-commutative
in nature. It is a maximal order in a quaternion algebra by the following
theorem.

Theorem 1.2.34. Let E be a supersingular elliptic curve, then End0(E) is a
quaternion algebra.

Proof. See in [88, Theorem 14.18].

1.3 Elliptic curve over C and complex multiplica-
tion

In this section, we explore an elliptic curve defined on the complex plane C

with its endomorphism ring O (an order in an imaginary quadratic field),
the maps between such curves, and the action of class group cl(O) on the
set of elliptic curves whose endomorphism ring is O.
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1.3.1 Elliptic curve over C

An elliptic curve over the complex plane C is associated to a lattice in C.
We will see that an elliptic curve over C up to isomorphism corresponds to
a lattice in C up to homothety. In particular, a torus, which is the quotient
of C by a lattice, corresponds to an elliptic curve over C.
A lattice Λ = [ω1, ω2] in C, which is generated by two complex numbers
ω1, ω2 ∈ C that are independent over the real number R, is defined as an
additive subgroup

Λ = {mω1 + nω2 : m, n ∈ Z}

of C. The fundamental parallelogram of the lattice Λ is given by the set

FΛ = {xω1 + yω2 : x, y ∈ R and 0 ≤ x, y < 1}.

Some special functions for a lattice are useful to connect elliptic curves to
lattices.

Definition 1.3.1. Let Λ be a lattice in the complex plane. An elliptic function
relative to the lattice Λ = [ω1, ω2] is a meromorphic complex function g(z) on C

which is doubly periodic i.e.

g(z + ω1) = g(z) and g(z + ω2) = g(z).

The set of elliptic functions for a lattice Λ = [ω1, ω2] forms a field C(Λ),
which is an extension of C. Elliptic function called Weierstrass ℘ is used to
parameterize elliptic curves over C. Before defining this, we define a series
on a lattice Λ called Eisenstein series.

Definition 1.3.2. The Eisenstein series of weight k > 2, an integer, for a lattice
Λ is the series

Gk(Λ) = ∑
ω∈Λ\{0}

1
ωk .

The series Gk(Λ) converges absolutely for integers k > 2.

Definition 1.3.3. The Weierstrass ℘ function relative to a lattice Λ is defined as

℘(z) = ℘(z; Λ) :=
1
z2 + ∑

ω∈Λ\{0}

(
1

(z−ω)2 −
1

ω2

)
.

It is easy to see that the Weierstrass ℘ function is holomorphic outside
the points of the lattice Λ and has poles of order two at the points of Λ.
Every lattice Λ in C gives an elliptic curve over C.
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Theorem 1.3.4. Let Λ be a lattice. The map

φ : C/Λ→ EΛ(C) ⊂ P2
C

given by
z + Λ 7→ [℘(z) : ℘

′
(z) : 1]

is an isomorphism of Riemann surfaces that is also an isomorphism of additive
groups, where the elliptic curve is given by

EΛ : y2 = 4x3 − g2x− g3

with coefficients

g2 =g2(Λ) = 60G4(Λ) = 60 ∑
ω∈Λ\{0}

1
w4

g3 =g3(Λ) = 140G6(Λ) = 140 ∑
ω∈Λ\{0}

1
w6

(1.3)

and with the non-zero discriminant

∆(Λ) = g3
2 − 27g3

3.

Proof. See in [82, Proposition 3.6].

This theorem shows that every lattice Λ defines a torus C/Λ and this
gives an elliptic curve over C. We will see that the converse is also true, i.e.,
each elliptic curve over C is coming from some lattice Λ.
The j-invariant of a lattice Λ is defined as the j-invariant of the corresponding
elliptic curve EΛ(C), which is given by

j(Λ) = 1728
g2(Λ)3

∆(Λ)
= 1728

g2(Λ)3

g2(Λ)3 − 27g3(Λ)2 .

Two elliptic curves over C are isomorphic if and only if they have same
j-invariants. There is a similar characterizing notion for lattices which is
a homothety. Two lattices Λ1 and Λ2 are called homothetic if Λ1 = αΛ2 for
some α ∈ C∗.

Theorem 1.3.5. Two lattices Λ1 and Λ2 are homothetic if and only if they have
the same j- invariant.

Proof. See in [88, Theorem 16.5].



28 CHAPTER 1. ISOGENY BASED CRYPTOGRAPHY

Since a j- invariant defines a lattice uniquely up to homothety, we are
interested in lattices up to homothety.
Any lattice [ω1, ω2] is homothetic to a lattice of the form [1, τ], where
τ belongs to the upper half plane H = {z ∈ C : Im z > 0}. There is a
holomorphic map on the upper half plane called j function, which identifies
all the lattices in C up to homothety.

Definition 1.3.6. The j function j : H → C is defined as j(τ) = j([1, τ]).
Similarly, the coefficients of the elliptic curve corresponding to the lattice [1, τ]
given in Equation 1.3 are defined as

g2(τ) = g2([1, τ]) and g3(τ) = g3([1, τ]).

The j function is invariant under the action of special linear group.
The modular group

Γ = SL 2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z : ad− bc = 1

}
,

is generated by two matrices S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
, acts on the

upper half plane H via linear fractional transformation as(
a b
c d

)
τ =

aτ + b
cτ + d

.

The j function is uniquely determined up to an equivalence class of H/Γ.

Theorem 1.3.7. The j function is holomorphic on H. Moreover, for τ1, τ2 ∈ H,
j(τ1) = j(τ2) if and only if τ1 = γτ2 for some γ ∈ Γ.

Proof. See in [28, Theorem 11.2].

In particular, j function is invariant under the action of the modular
group Γ.

Theorem 1.3.8. The fundamental region for H/Γ is given by

FΓ = {τ ∈H : |Re(τ)| ≤ 1/2 and |τ| ≥ 1}.

The restriction of the j function to the fundamental region: j|FΓ → C is a bijection.

Proof. See in [83, Theorem 4.1].
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For each j-invariant in C, there exists an elliptic curve of that j-invariant.
Since the complex place C is in bijection with the fundamental region
FΓ, the points in the fundamental region represent all the elliptic curves
over C up to isomorphism. Therefore, the following theorem known as
uniformization theorem follows from Theorem 1.3.8.

Theorem 1.3.9. For every elliptic curve E over the complex number C, there
exists a lattice Λ such that E is isomorphic to the elliptic curve φ(C/Λ) := EΛ,
where φ is the isomorphism defined in Theorem 1.3.4.

1.3.2 Maps of complex tori

Let Λ1, Λ2 be latices in C. Let α ∈ C such that αΛ1 ⊂ Λ2. Then the scalar
multiplication by α map mα : z→ αz induces a well-defined holomorphic
group homomorphism

φα : C/Λ1 → C/Λ2

given by
z + Λ1 7→ αz + Λ2.

The following theorem shows that a choice of a complex number α such
that αΛ1 ⊂ Λ2 is equivalent to a choice of holomorphic map between the
tori C/Λ1, C/Λ2 preserving the zero element and this is equivalent to a
map between the corresponding elliptic curves EΛ1 , EΛ2 .

Theorem 1.3.10. Let Λ1, Λ2 ⊂ C be two lattices.

1. The map

{α ∈ C : αΛ1 ⊂ Λ2} → { holomorphic maps φ : C/Λ1 → C/Λ2

with φ(0) = 0}
α 7→ φα

is an isomorphism of additive groups and for Λ1 = Λ2 this is an isomor-
phism of commutative ring.

2. Let EΛ1 and EΛ2 be elliptic curves corresponding to lattices Λ1 and Λ2
respectively, then there is one to one correspondence between

Hom(EΛ1 , EΛ2)→ { holomorphic maps φ : C/Λ1 → C/Λ2 with φ(0) = 0}.
Proof. See in [82, Theorem 5.3].

Furthermore, two elliptic curves EΛ1 and EΛ2 corresponding to lattices
Λ1, Λ2 ⊂ C respectively are isomorphic over C if and only if Λ1 and Λ2 are
homothetic. See Figure 1.2.
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C C

C/Λ1 C/Λ2

EΛ1 EΛ2

π1

mα

π2

∼=

φα

∼=
φ

Figure 1.2: Map between tori and corresponding map between elliptic
curves.

1.3.3 Complex multiplication

For a lattice Λ and the corresponding elliptic curve E relative to Λ, Theorem
1.3.10 implies that

{α ∈ C : αΛ ⊂ Λ} ∼= End(E).

Endomorphism ring for such an elliptic curve E over C is an order O in an
imaginary quadratic field K. By an order, we mean a subring of K that is a
free Z module of rank 2, therefore it is both a lattice and a subring of K.

Definition 1.3.11. Let O be an order in an imaginary quadratic field K then two
O-ideals a and b are said to be equivalent if they are homothetic as lattices, more
precisely, a = λb for λ ∈ K∗. This can be written as αa = βb for some non-zero
α, β ∈ O.

An elliptic curve of endomorphism ring O is called an elliptic curve
with complex multiplication (CM) by O. For any O-ideal a, the set

Oa := {α ∈ K : αa ⊂ a}

is an order in K. The ideal a is called proper if Oa = O. In fact, the proper
ideals are the invertible ideals, where an O-ideal a is called invertible if
there exists anO-ideal a−1 such that aa−1 = O. Equivalence classes of such
ideals form a multiplicative group called class group.

Definition 1.3.12. Let O be an order in an imaginary quadratic field K. Then
the set of proper O-ideals up to equivalence form a multiplicative group called the
class group and is denoted as cl(O).

Each of the element in the class group cl(O) corresponds to a CM elliptic
curve over C by O.
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Theorem 1.3.13. Let O be an order in an imaginary quadratic field. Each ideal
class in the class group cl(O) represents a homothetic class of lattice Λ in C such
that the corresponding elliptic curve EΛ has endomorphism ring O; conversely
if EΛ is an isomorphic class of elliptic curve obtained from a homothetic class of
lattice Λ, then Λ is homothetic to an element of cl(O).

Proof. Follows from Theorem 1.3.4 and [28, Corollary 10.20].

This theorem gives a bijection, given by a 7→ j(a), between the class
group cl(O) and the set of elliptic curves over C whose endomorphism
ring is O. Finiteness of the class group implies that the set of all elliptic
curves over C whose endomorphism ring are O is also finite. In fact, more
is true. For an imaginary quadratic order O, denote

EO(C) = {j(E) : E is defined over C and End(E) = O}.

Then the class group cl(O) acts on EO(C) and is defined as follows. Let E
be such that j(E) ∈ EO(C) and a ∈ cl(O). It is enough to define the action
of a on E. There exists a lattice Λ ⊂ C such that E = EΛ by Theorem 1.3.9.
Also from Theorem 1.3.13, there exists an ideal class b ∈ cl(O) homothetic
to Λ as an ideal and hence E = Eb.
Let a be an integral representation of an ideal class. Then the ideal a−1b
belongs to cl(O) and satisfies a−1b ⊃ b. There exists an elliptic curve say
Ea−1b corresponding to the ideal a−1b. Define the action of a on Eb as

a ? Eb := Ea−1b

and in terms of elements of EO(C)

a ? j(Eb) = j(Ea−1b).

This is a group action of cl(O) on EO(C). Furthermore, for any proper
O-ideals a and b, a ? j(Eb) = j(Ea−1b) = j(Eb) if and only if b is homothetic
to a−1b by theorem 1.3.7. This gives a is principal and hence the action is
free.

Theorem 1.3.14. The action of a class group cl(O) of an imaginary order O on
the set EO(C) of elliptic curves that have CM by O is transitive and free.

Proof. Follows from the above observations and from Theorem 1.3.13.

If there is a group action on a set which is both transitive and free then
the set is called a principal homogeneous space. Therefore, the set EO(C) is a
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principal homogeneous space or also called cl(O)-torsor.

Considering λ = 1, the inclusion λb ⊂ a−1b corresponds to a holomor-
phic map φ : C/Λ1 → C/Λ2 with φ(0) = 0, where Λ1 ∼ b, Λ2 ∼ a−1b and
∼ denote homothety. This corresponds to an isogeny

φa : Eb → Ea−1b = a ? Eb.

The kernel and the degree of the isogeny φa are given by a torsion sub-
group and the norm of the ideal a respectively by Theorem 1.3.16. Before
presenting this theorem, we give a definition.

Definition 1.3.15. Let E be such that j(E) ∈ EO(C). For any O-ideal a, the
a-torsion subgroup of E is denoted as E[a] and is defined as

E[a] = {P ∈ E(C) : α(P) = 0 for all α ∈ a}.

Theorem 1.3.16. Let E be an elliptic curve over C such that j(E) ∈ EO(C). Let
a be a proper ideal of O and φa : E→ a ? E be an isogeny. Then the kernel of φa

is E[a] and the degree of φa is the norm of a.

Proof. See in [88, Theorem 18.14].

Similar properties also hold when elliptic curves are defined over a
finite field. Let O be an order in an imaginary quadratic field Q[

√
dπ],

where dK is a negative integer. Denote

EO(Fp) = {j(E) : E is defined over Fp and End(E) = O}.

The following theorem gives the action of the class group cl(O) on the
set EO(Fp).

Theorem 1.3.17. Let Fp be a finite field. Let O be an order of an imaginary
quadratic field. If the set EO(Fp) is non empty then the action of cl(O) on
EO(Fp) is transitive and free.

Isogeny graph

Let Fp be a finite field. We can define a relation in the set of isomorphic
classes of an elliptic curve over Fp as E1 ∼ E2 if there exists an isogeny
between them. This relation is, in fact, an equivalence relation because
for each isogeny, there exists a unique dual isogeny by Theorem1.2.21,
and we can compose two isogenies. Furthermore, from Theorem 1.2.24
each equivalence class either contains only ordinary elliptic curves or only
supersingular elliptic curves. Isogeny graph is usually constructed by
fixing a prime `.
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Definition 1.3.18. Let G`(Fp) be a graph whose vertex set consists of the Fp-
isomorphism classes of elliptic curve over Fp and edges set consists of the `

isogenies between them that are defined over Fp.

1.4 Isogeny based cryptography

Isogeny based cryptography has a relatively short history, which started
with a work of Couveignes titled ”hard homogeneous space” in 1996 [27].
Later the hard homogeneous space was upgraded as a post-quantum Diffie
Hellman key exchange independently by Rostovtsev and Stolbunov in 2006
and also in 2010 [75, 87], now it is known as the CRS scheme. A hash func-
tion by Charles, Goren, and Lauter in 2009 [21] is also considered as one of
the initiators of the isogeny based cryptography. An efficient key exchange
protocol has been developed by Jao and De Feo in 2011, known as Supersin-
gular Isogeny Diffie Hellman (SIDH), and an extended version including
a zero-knowledge identification scheme in 2013 by De Feo, Jao and Plût.
An improvement in the CRS scheme was proposed in 2018 [31] as a step
towards a practical scheme. Another milestone to efficient isogeny-based
cryptography after SIDH is the key exchange scheme by Castryck, Lange,
Martindale, Panny, and Renes known as Commutative SIDH (CSIDH) in
2018. Besides these, many other isogeny primitives including signature
schemes for example GPS [51], SeaSign [30], Csi-fish [12], SQISign [46] etc
and a verifiable delay function [32] have come to the literature.
There are some existing attacks for isogeny schemes, for example, an al-
gorithm by Kohel, Lauter, Petit, and Tignol (KLPT) [59], an attack by Petit
to tackle some variants of isogeny problems [71] and its improvement by
Kutas, Martindale, Panny, Petit, and Stange [61], which we will discuss
briefly later in Chapter 3.

1.4.1 Introduction to public key cryptography

As the name suggests, public-key cryptography uses some public keys that
are accessed to everyone, and only private keys are kept private. Public
key encryption and digital signature are the main application of public-key
cryptography. A seminal paper entitled ”New Directions in cryptography”
[36] by Diffie and Hellman opened a door of the public key cryptography
in 1976 by proposing a key exchange protocol known as Diffie-Hellman
(DH) key exchange based on the difficulty of discrete logarithm problem.
In both encryption and digital signature, a key exchange scheme is required.
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A key exchange scheme is a key sharing mechanism between the commu-
nicating parties that helps to agree on a secret key through a public channel.

Diffie Hellman Key Exchange

Diffie-Hellman (DH) key exchange uses a commutative cyclic group, say
(G, ?), generated by an element g of a prime order q. Two parties, Alice
and Bob, want to agree on a common key through an insecure channel.
They first agree on the cyclic group G with a generator g. Alice and Bob
choose random numbers KA and KB respectively from F∗q , which is a set of
non-zero elements of a finite field of q elements. Alice computes

KAg := g ?g ? . . . ? g︸ ︷︷ ︸
KA times

and sends it to Bob. Bob computes

KBg := g ?g ? . . . ? g︸ ︷︷ ︸
KB times

and sends to Alice. Now, getting each others public keys, both of them get
the common secret key

S := KA(KBg) = KB(KAg),

where Alice computes KA(KBg) and Bob computes KB(KAg). The private
keys KA and KB are secure due to the difficulty of discrete logarithm prob-
lem: find KA from the knowledge of g and KAg or similarly find KB from g
and KBg.
The common secret key S is secure because of the following problems.

• Decisional Diffie-Hellman problem (DDH) : distinguish the two prob-
ability distribution (KAg, KBg, S) and (KAg, KBg, Krg) for any random
integers 1 ≤ KA, KB, Kr ≤ q.

• Computational Diffie-Hellman problem (CDH): compute the common
key S form the knowledge KAg and KBg in the above setting of the
key exchange.

Sometimes a comparison can be done between the problems by observ-
ing how one affects another. A notion of reduction of a problem is useful in
this situation.
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Definition 1.4.1. A problem P1 is said to reduce to another problem P2 if to solve
a problem P1, the instance of P1 can be transformed to the instance of problem P2
and the solution of P2 can again be transformed to a solution of problem P1. It is
denoted as P1 ≤R P2.

If P1 ≤R P2 then we can say that the problem P1 is no harder than P2.
For example, the following lemmas are easy-to-prove reductions.

Lemma 1.4.2. CDH ≤R DLP.

Solution of DLP gives a solution to CDH. Therefore, CDH is no harder
than DLP.

Lemma 1.4.3. DDH ≤R CDH.

Proof. If there is an algorithm to solve CDH. Then the distribution for DDH
can be easily determined.

Therefore, DDH is no harder than CDH.

A reduction of a discrete logarithm problem to a computational Diffie-
Hellman problem is a non-trivial reduction.

Lemma 1.4.4. [64] DLP ≤R CDH.

Encryption scheme

A message can be kept secure by encryption, which changes a message
into an unintelligible form called ciphertext by using some keys. Only the
party who knows the private key can decrypt the ciphertext and gets the
original message. Mainly, an encryption scheme can be divided into three
steps: key generation, where users generate keys; encryption, where sender
encrypts messages into ciphertext; and decryption, where receiver decrypts
the ciphertext and get the original message. Besides the communicating
parties, we always suppose a malevolent entity called adversary or attacker
whose aim is to obtain private information using the available data.
Security of encryption relies on the following properties :

• One way encryption (OWE): Encryption should be one way, i.e., given
a ciphertext c, it should not be able to compute its corresponding
message.

• Semantic security: No information on the message can be retrieved
from its ciphertext.
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• Indistinguishability (IND): An adversary should not be able to distin-
guish the encryption of any two same length messages.

Mainly, there are the following strategies (attack models) of an adversary.

• Passive attack/ chosen plaintext attack (CPA): An attacker can choose
random plaintexts and get corresponding ciphertexts. With this infor-
mation, the aim is to obtain information related to encryption.

• Lunchtime attack (CCA1): An attacker can ask for decryption of
ciphertext until a certain time i.e. until a challenge ciphertext is
received.

• Adaptive chosen ciphertext attack (CCA): Attacker can ask for decryp-
tion to any chosen ciphertext before or after a challenge ciphertext is
received except the challenge ciphertext itself.

Any attack strategy can be applied to any one of the above-mentioned
security properties. For example, if encryption is secure from the CCA
(respectively CPA) model of attack to indistinguishability (IND) then the
encryption is called IND-CCA ( respectively IND-CPA) secure.

A public-key encryption method derived from DH key exchange was
proposed by Elgamal in 1985 known as ElGamal encryption scheme [40].
We briefly describe the ElGamal system in order to give an example of an
encryption scheme.
A cyclic group (G, ?) of order q, a prime number, of generator g is known
to both Alice and Bob who are the communicating parties. Suppose Bob
wants to send a message m to Alice.
Key generation. Alice generates her private and public keys as follows

• Samples uniformly random AS ∈ F∗q and computes AP = ASg.

• Public key is AP and AS is the secret key.

Encryption. Bob encrypts a message into a ciphertext.

• Changes a message into an element m of G by a known bijective
mapping f :Mm → G, whereMm is the message space containing
all the possible messages.

• Samples uniformly random BS ∈ F∗q and computes the common
secret S = BS AP.

• Computes C1 = BSg , C2 = mS.



1.4. ISOGENY BASED CRYPTOGRAPHY 37

• The ciphertext is the pair C = (C1, C2).

Bob sends C to Alice.
Decryption. Alice decrypts the ciphertext C as follows

• Computes the common secret S = ASC1 = ASBSg.

• Computes the inverse of S ∈ G which is S−1. Computes m = C2 ? S−1,
this gives message because

C2 ? S−1 = (mS) ? S−1 = m ? 1G = m,

where 1G is the identity element of the group G.

• Retrieves the message by using the known map f−1 : G →Mm.

Digital signature

A document or message that is sent to a receiver may not be in an original
form, not been sent by the right person, or there might be some issues
that can make the receiver suspect on both the message and the sender. A
digital signature is a mathematical scheme that proves the identity of the
sender, checks the integrity of data without allowing the signer to deny
his/her involvement in the signature generation. A valid digital signature
must satisfy the following properties.

1. Authenticity: It should verify that the message or document is sent
by the right person, not by a defrauder.

2. Unforgeability: A signature forgery is a capability of creating a pair
of a message and a valid signature to that message different from the
signature generated by the authentic signer. The digital signature
should prevent such possibility of forging a signature. There are
mainly the following types of forgeries:

i. Existential Forgery: The adversary can forge at least one signa-
ture to a message of his choice.

ii. Selective Forgery: The adversary succeeds in forging the signa-
ture to the message chosen by the challenger before the attack.

iii. Universal Forgery: The adversary is able to produce a valid
signature of any given message but not the secret key.

iv. Total Break: The adversary can compute the signers secret key.
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3. Non-repudiation: After a message is signed, the signer can not later
be denied his involvement.

4. Integrity: It ensures that the message has not been changed before
reaching to the receiver.

There are many signature schemes which can be used to produce valid
signatures. Mainly, the signature scheme consists of three stages: key gen-
eration, signing, and verification. As an example of a valid signing method,
here we describe a method by Elgamal [40].
Elgamal signature:
Global parameters. These are parameters known to both signer and veri-
fier.

• A collision resistant hash functionH.

• A cyclic group F∗q = 〈g〉, where q is a prime number.

Key generation:

• Sample uniformly randomly AS in 1 < AS < q− 1.

• Compute AP = gAS ∈ Fq.

• Public key AP and secret key is AS.

Signing: Let m be a message to be signed.

• Sample uniformly randomly BS in 0 < BS < q− 1 with gcd(BS, p−
1) = 1.

• Compute S1 = gBS ∈ Fq and S2 = (H(m)− ASS1)B−1
S mod (p− 1).

• Ensure S2 6≡ 0 mod (p− 1), otherwise repeat with new value BS.

• The pair S = (S1, S2) is the signature.

Verification: Accept the signature if the following conditions are satisfied.

• S1 ∈ F∗q and 0 < S2 < p− 1.

• gH(m) = AS1
P SS2

1 in Fq.
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Otherwise reject the signature.
Why verification works ? SinceH(m) = BSS2 + ASS1 mod (p− 1),

gH(m) = gBSS2+ASS1 = (gAS)S1(gBS)S2 = AS1
P SS2

1 in Fq.

A forgery might be done either by the private key, which is safe by the
difficulty of discrete logarithm problem, or by finding collision in the
hash functionH i.e. H(m1) = H(m2) mod (p− 1), which is not possible
becauseH is a collision resistant hash function.

1.4.2 Complexity notation

We use the term complexity of an algorithm A to mean the computational
steps required to perform a task by the algorithm A. The asymptotic steps
are expressed with a function in terms of the input size. Big O notation is
used to formalize the worst-case complexity, which is the maximum number
of steps required by A and is bounded by a function.
Let g(n) be the number of steps required to run an algorithm, where the
argument n is the size of the input, and f is a positive integer valued
function then

g(n) = O( f (n))

and read as g(n) is big O of f (n) if there exists a positive integer c and a
non negative integer k such that

g(n) ≤ c f (n) ∀n ≥ k.

Big O tilde notation is used to ignore logarithmic factors

O( f (n) logk n) = Õ( f (n)).

An algorithm is called an efficient algorithm if its worst-case complexity is
polynomial function in an input size.

1.4.3 SIDH and its variants

Supersingular Isogeny Diffie-Hellman (SIDH) is a post-quantum key ex-
change protocol which was developed by Jao and De Feo in 2011 [56]. This
is the only one isogeny scheme that was submitted in a competition of
post-quantum cryptography standardization by NIST in the name Super-
singular Isogeny Key Encapsulation (SIKE) [6] after modifying it as a key
encapsulation mechanism, which is now included in the list of third-round



40 CHAPTER 1. ISOGENY BASED CRYPTOGRAPHY

alternate candidates. Here we briefly describe the SIDH key exchange
protocol.
SIDH uses supersingular isogeny graph, where the vertices are the j-
invariants of supersingular elliptic curves over Fq with q = p2. A special
prime of the form p = pn1

A pn2
B f ± 1 is used. Alice takes a random walk

of length n1 in the supersingular isogeny graph GpA(Fq) and Bob takes a
random walk of length n2 in the supersingular isogeny graph GpB(Fq). The
goal is to reach at the same vertex in Fq efficiently. A choice of a random
walk of length n1 is equivalent to a choice of a random cyclic subgroup
〈H1〉 of E[pn1

A ] of order pn1
A because a subgroup defines a separable isogeny

uniquely. Similarly, Bob chooses a cyclic subgroup 〈H2〉 of E[pn2
B ] of order

pn2
B to define a random walk of length n2. Then the group 〈H1, H2〉 is a

cyclic group of order pn1
A pn2

B which determines an isogeny walk, driving
both Alice and Bob to the same place i.e. to the same j-invariant in Fq.

E0/〈H2〉
E0/〈H1, H2〉

E0 E0/〈H1〉

ψ

φ

φ
′

ψ
′

Figure 1.3: Commutative diagram representing the isogeny paths con-
structed by Alice and Bob.

The selection of the prime p = pn1
A pn2

B f ± 1 gives the structure of the
elliptic curve as

E(Fq) ' (Z/(p∓ 1)Z)2 ' (Z/pn1
A Z)2 ⊕ (Z/pn2

B Z)2 ⊕ (Z/ f Z)2

by Theorem 1.2.18. In particular E[pn1
A ], E[pn2

B ] ⊂ E(Fq). Therefore the sub-
groups 〈H1〉 and 〈H2〉 are defined over Fq. In fact, there are pn1−1

A (pA + 1)
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cyclic subgroups of E[pn1
A ] ⊂ E(Fq) of order pn1

A and hence each of this
subgroup defines unique separable isogeny of degree pn1

A . This shows that
an isogeny path for Alice and Bob can be represented by a single group
element defined over Fq. Therefore, this choice of prime gives an efficient
representation of the chosen isogeny walk. Commutative diagram 1.3 is ap-
plicable if there is a way to start a path from E0/〈H1〉 and E0/〈H2〉 leading
to the same curve E0/〈H1, H2〉. The authors found a smart way to do this.
We describe this idea together with the precise way to generate parameters.

Parameters that are publicly known include the prime p = pn1
A pn2

B f ± 1,
a finite field Fq with q = p2, and a supersingular elliptic curve E0. More-
over, the bases {PA, QA} and {PB, QB} of E[pn1

A ] and E[pn2
B ] respectively are

also public keys.
Alice chooses two random integers 0 ≤ a1, a2 ≤ pn1

A with gcd(pn1
A , a1) =

1 or gcd(pn2
B , a2) = 1 and construct a random cyclic group 〈H1〉 = 〈a1PA +

a2QA〉 of E0 of order pn1
A . Suppose the corresponding isogeny be φ : E0 →

EA = E0/〈H1〉 with kernel 〈H1〉 and codomain is the curve EA. An insight
of the Jao-De Feo to make Diffie Hellman like key exchange is to use the
images of the torsion points of each other’s secret isogeny. Therefore, Alice
computes the images φ(PB), φ(QB) on her private isogeny φ and sends
EA, φ(PB), φ(QB) to Bob.
Similarly, Bob chooses 0 ≤ b1, b2 ≤ pn2

B with gcd(pn2
B , b1) = 1 or gcd(p, b2) =

1, and 〈H2〉 = 〈b1PB + b2QB〉 of E0 of order pn2
B , an isogeny ψ : E0 → EB =

E0/〈H2〉 with kernel 〈H2〉 and codomain EB. Bob sends his public keys,
which are EB, ψ(PA), ψ(QA) to Alice.
After getting each other’s public keys, Alice computes the isogeny φ

′
:

EB → EB/〈ψ(H1)〉; Bob computes the isogeny ψ
′

: EA → EA/〈φ(H2)〉. It is
possible to calculate the image of Alice’s (Bob’s) secret subgroup by Bob’s
(Alice’s) secret isogeny.

〈ψ(H1)〉 =〈ψ(a1PA + a2QA)〉 = 〈a1ψ(PA) + a2ψ(QA)〉
〈φ(H2)〉 =〈φ(b1PB + b2QB)〉 = 〈b1φ(PB) + b2φ(QB)〉.

Both of them get an isomorphism class of elliptic curve EA/φ(〈H2〉) '
EB/ψ(〈H1〉). Since an isomorphism class of an elliptic curve is identified
uniquely by the j-invariant, the j-invariant j(EA/〈φ(H1)〉) = j(EB/〈φ(H2)〉)
is the common key. See Figure 1.4.

Hardness assumption of SIDH. A solution of Problem 3.1.1 can be
used to break the SIDH. But, the security of SIDH is mainly based on the
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E0

EA = E0/〈H1〉

φ(PB), φ(QB)

φ(〈H2〉) = 〈b1φ(PB) + b2φ(QB)〉

EB = E0/〈H2〉

ψ(〈H1〉) = 〈a1ψ(PA) + a2ψ(QA)〉
ψ(PA), ψ(QA)

EA/φ(〈H2〉) ' EB/ψ(〈H1〉)

φ
ψ
′

ψ φ
′

Figure 1.4: Commutative diagram showing the computation of Alice and
Bob.

following problem called Supersingular Decision Diffie-Hellman (SSDDH)
problem.

Problem 1.4.5. (SSDDH.) Let E0, pA, pB, n1, n2, PA, QA, PB, QB be the parame-
ters chosen for SIDH system with pA 6= pB and pn1

A ≈ pn2
B .

The problem is to determine the distribution of a given tuple that is sampled with
probability 1/2 from one of the following two distributions:

1. (E0/〈H1〉, φ(PB), φ(QB), E0/〈H2〉, ψ(PA), ψ(QA), E0/〈H1, H2〉) , where

• H1 ∈ E0(Fq) is a uniformly random point of order pn1
A ,

• H2 ∈ E0(Fq) is a uniformly random element of order pn2
B ,

• φ : E0 → E0/〈H1〉 is the isogeny of kernel 〈H1〉, and

• φ : E0 → E0/〈H2〉 is the isogeny of kernel 〈H2〉;

2. (E0/〈H1〉, φ(PB), φ(QB), E0/〈H2〉, ψ(PA), ψ(QA), E0/〈G〉) , where G ∈
E0(Fq) is a uniformly random point of order pn1

A pn2
B .

As far as we know, there is only exponential time algorithm to solve SSDDH
problem even on the quantum computer.
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Variants of SIDH

In SIDH, the elliptic curves in the isogeny walks taken by Alice and Bob
are shorter than the walks between any two random curves. For example,
Alice has pn1−1

A (pA + 1) ≈ p1/2 possible options for EA. Since there are
around p/12 supersingular elliptic curves over Fq with q = p2 by Theorem
1.2.23, the meet at middle approach can determine a path between any two
generic elliptic curves in complexity Õ(

√
p). But in case of SIDH, there are√

p possible elliptic curves between, for example, E0 and EA, therefore the
meet at middle approach can find a path between them in O( 4

√
p).

For some choices of parameters, the elliptic curves of Alice and Bob can be
selected as the generic elliptic curves that look like uniformly random. In
[71], Petit mentioned two variants of SIDH: unbalanced degree and optimal
degree variant according to the parameters, and proposed a polynomial-
time attack technique on these variants using the torsion point images,
which we will discuss in Chapter 3.

Unbalanced degree variant: Parameters used in SIDH are balanced
ones i.e. pn1

A ≈ pn2
B , which manages the same level of security to both the

parties Alice and Bob. But, there are some situations where one party may
require more security than other. Unlike SIDH parameters, in unbalanced
variant the prime powers pn1

A and pn2
B are chosen such that one of them is

larger than other, for example, pn1
A � pn2

B .

Optimal degree variant: In SIDH, the public curves EA and EB are not
uniformly random in isogeny graph. In optimal degree variant, pn1

A and pn2
B

are increased to around ≈ p2 so as to sample EA and EB uniformly random.
This also gives freedom to choose two powersmooth (each divisor is less
than fixed integer bound) numbers N and M in place of the two prime
powers pn1

A and pn2
B .

1.4.4 Cryptography from hard homogeneous space

Consider a commutative group G acting on a set X freely and transitively
and the action is written as gx for g ∈ G and x ∈ X. Then the set X is
called a principal homogeneous space. By looking only at the elements
of the set X, the action of G on X is not visible but for each x, y ∈ X there
exists the unique g ∈ G such that y = gx. Couveignes defined in [27], as a
homogeneous space is considered a hard homogeneous space if the following
operations :
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• given two any elements g, h check whether they belong to G or not; if
yes, check their equality. For example, an equality between g, h ∈ G
can be determined by first computing g−1 and checking g−1h is the
identity 1G of G or not, where g−1h = 1G gives g = h,

• given any two elements x, y check whether they belong to X or not
and determine their equality,

• sample uniformly randomly the elements of G,

• compute group action of G on X,

should be easy (cryptographically) to compute and the following opera-
tions:

• given x, y ∈ X find g ∈ G such that gx = y, and

• given w, x, y ∈ X find the unique element z ∈ X such that gy = z,
where g should satisfy gw = x

should be hard to compute.
Given a hard homogeneous space, a Diffie Hellman like key exchange
protocol can be designed. Precisely, let Alice and Bob know a group G and
a fixed element x ∈ X. Alice chooses a random element g ∈ G as a private
key and computes gx as a public key; Bob chooses a random element h ∈ G
as a private key and computes hx as a public key; getting hx Alice computes
ghx and getting gx Bob computes hgx to share a common secret ghx = hgx.
See Figure 1.5. By assumption, the set X is a hard homogeneous space, both
the private keys are secure.

Diffie Hellman type of key exchange protocols by Couveignes-Rostovtsev-
Stolbunov (CRS) and Commutative Supersingular Isogeny Diffie Hellman
(CSIDH) are based on the hard homogeneous spaces given by a class group
action to a set of elliptic curves over a finite field.

CRS scheme. CRS scheme is a joint outcome of Couveignes [27] ap-
proach of hard homogeneous space and further independent development
of Rostovtsev and Stolbunov [75, 87] into a key exchange protocol. This is a
Diffie-Hellman like key exchange scheme using the underlying group as a
class group and its well-defined action on the set of elliptic curves of fixed
endomorphism ring.
Let E be an ordinary elliptic curve whose endomorphism ring is the max-
imal order OK of an imaginary quadratic field K. From above notation,
let

EOK(Fp) = {j(E) : E is defined over Fp and End(E) = OK}.
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x

hx

gx

g(hx) = h(gx)

g

h

g

h

Figure 1.5: Key exchange between Alice and Bob in a homogeneous space
X, where underlying group is G and the colors represent the respective
calculation done by them.

The Frobenius endomorphism πp satisfies a characteristic equation
with coefficients in Z i.e. π2

p − tπp + p = 0, where t be its trace and its
discriminant Dπ = t2 − 4p. The discriminant Dπ < 0 when E is ordinary.
Number of rational ` isogenies (of degree `) with domain E are determined
by looking at the Kronecker symbol (Dπ

` ) for some prime `.

Theorem 1.4.6. Let E(Fp) be an elliptic curve and Dπ be the discriminant of the
Frobenius endomorphism then, for a prime (`, p) = 1, the followings are the cases
of rational isogenies with domain E.

• If (Dπ
` ) = 1 (known as Elkies prime) then there are two isogenies of degree `

with domain E.

• If (Dπ
` ) = −1 (known as Atkin prime), then there are no ` isogenies.

• If (Dπ
` ) = 0 (ramified primes) then there are 1 or `+ 1 isogenies of degree `.

Proof. See in [58, Proposition 23].

In CRS key exchange scheme, the group cl(OK) is used. The discrimi-
nant of OK is denoted by DK.
Choose a set {`1, . . . , `k} of Elkies primes, which are primes with (Dπ

`i
) = 1

for all i ≤ k, then
`iOK = lil̄i and l−1

i = l̄i.
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Precisely, this type of primes give

π2
p − tπp + p = (πp − αi)(πp − βi) mod `i

and the ideals can be written as

li = (`i, πp − αi) and l̄i = (`i, πp − βi).

The number k is chosen so that the set of ideals {l1, . . . , lk} generates the
class group cl(OK). Under the Riemann hypothesis, k can be chosen in
O(log2 |DK|) [53]. As observed before, the class group action of cl(OK) on
EOK(Fp) is transitive and free. Furthermore, each of the ideal li corresponds
an isogeny

φli : E→ li ? E = Eli

and its degree is the norm of the ideal li. Therefore, the ideals li and l̄i
give two isogenies starting from the elliptic curve E. This action can be
computed by using a fact that the Frobenius πp acts as a multiplication by
αi map on the `i torsion subgroup E[`i] of E. Then, its eigenspace gives
the kernel of the isogeny φli and the isogeny can be computed by Vélu’s
formula.
The following homomorphism

f : Zk cl(OK)

(e1, . . . , ek)
k

∏
i=1

l
ei
i ,

gives a representation of elements of the class group by the vectors in the
lattice Zk.
Suppose Alice and Bob want to share a common secret. Alice chooses a
random vector a = (a1, . . . , ak) in the lattice Zk to represent an element

aA :=
k

∏
i=1

l
ai
i

of the ideal class cl(OK). Alice computes aA ? E = EaA . Her private key is
the vector a and she publishes EaA .
Bob chooses a random vector b = (b1, . . . , bk) ∈ Zk to represent an element

bB :=
k

∏
i=1

b
bi
i
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of the ideal class cl(OK). Bob computes the action bB ? E = EbB and sends
it to Alice keeping the vector b as the private key.
Now Alice computes aA ? EbB and Bob computes bB ? EaA . Both of them
represent same elliptic curve in EOK(Fp) since

EaAbB = bB ? EaA = bB ? (aA ? E) = aA ? (bB ? E) = EbBaA .

CSIDH: Commutative SIDH. CSIDH was developed by Castryck, Lange,
Martindale, Panny, and Renes in 2018 [18] as an efficient version of CRS
scheme but by using supersingular elliptic curves.
Let Endp(E) be the subring of the full endomorphism ring End(E) con-
taining endomorphisms that are defined over the base field Fp. If E is
supersingular then End(E) is an order in a quaternion algebra but Endp(E)
is an order O in an imaginary quadratic field. Therefore, similarly as in
CRS scheme, the class group action of cl(O) on the set

EO(Fp) = {j(E) : E is supersingular curve defined over Fp and Endp(E) = O}

i.e.
cl(O)× EO(Fp)→ EO(Fp)

is transitive and free.
A special prime p of the form p = 4 · `1 · · · `k − 1 with small distinct primes
`i and p ≡ 3(mod 8) is used. The starting curve is fixed to E0 : y2 = x3 + x
over Fp, which is supersingular if and only if p ≡ 3(mod 4). The trace of
the Frobenius endomorphism πp is zero and πp satisfies π2

p + p = 0. Then
Endp(E) = Z[πp] in Q(

√−p) and any supersingular elliptic curve over
Fp is Fp-isomorphic to the curve EA : y2 = x3 + Ax + x, where A ∈ Fp is
uniquely determined.
The primes `i are Elkies primes since π2

p ≡ −p ≡ 1 mod `i, therefore the
ideals are factored as `iO = li l̄i, where

li = (`i, πp − 1) and l̄i = (`i, πp + 1).

Now, main speed up comes from an excellent trick as used in [31]
for computing the class group action. It is required to find isogenies φli
and φl̄i

corresponding to ideals li and l̄i respectively. The kernel of the
isogeny φli consists of those points in E[`i] that are fixed by the Frobenius
πp and the kernel of φl̄i

consists of points P ∈ E[`i] defined over Fp2 such
that πp(P) = −P. With these setting of the parameters, the CSIDH key
exchange is analog to the CRS key exchange protocol.
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Chapter 2

Segre and Veronese embedding

In this chapter, we discuss briefly some background of Segre and Veronese
embeddings that will be used in Chapter 5. These terminologies are already
common in literature such as in [76, 80, 92], we consider that they are taken
from those references unless otherwise stated.
Let Pn = Pn

κ = (κn+1 \ 0)/ ∼ be the projective space of dimension n for
any field κ.

2.1 Quadratic hypersurface

Definition 2.1.1. A quadratic hypersurface or quadric surface in the projective
space Pn is the zero set of a homogeneous polynomial G ∈ κ[z0, . . . , zn] of the
form

G =
n

∑
i=0

ciz2
i +

n

∑
i=0

n

∑
j=i+1

ci,jzizj.

Elliptic curve arises as an intersection of two quadric surfaces. For a gen-
eral choice of two quadric surfaces Q1, Q2 ⊂ P3

κ̄, the intersection Q1 ∩Q2
is isomorphic to an elliptic curve, whose isomorphism class is determined
by the j-invariant.

We will observe quadric surfaces as the images of Segre embeddings.
Segre embedding embeds the product of two projective spaces into a bigger
projective space .

Definition 2.1.2. The standard Segre embeddings are the morphisms of the pro-
jective varieties

49
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Pn ×Pm
P(m+1)(n+1)−1

([x0 : . . . : xn], [y0 : . . . : ym]) [x0y0 : ... : xnym]

sn,m

where xiyj’s are ordered according to the standard lexicographical order. The
images of these embeddings are called standard Segre varieties and are denoted by
Σn,m.

Example 2.1.3. For the Segre embedding

P1 ×P1 P3

([x0 : x1], [y0 : y1]) [x0y0 : x0y1 : x1y0 : x1y1],

s1,1

we have s1,1(P
1 ×P1) = Σ1,1 ⊂ P3 and Σ1,1 is a smooth quadric surface defined

by the equation
z0z3 = z1z2,

where [z0 : z1 : z2 : z3] is the coordinate of P3.

Smooth quadric hypersurface are unique up to projective isomorphism.

Lemma 2.1.4. All the smooth quadric hypersurfaces of Pn
κ̄ are projectively iso-

morphic.

Proof. See in [55, Exercise 5.12].

2.2 Curve as an intersection of quadric surfaces

By a bi-homogeneous polynomial of bi-degree (u, v) in n + m variables:
F(x1, . . . , xn, y1, . . . , ym), we mean F is homogeneous in xi of degree u and
homogeneous in yj of degree v.
The intersection of two quadric surfaces in P3 is a curve of bi-degree (2, 2).
Suppose we have two smooth quadric surfaces Q1, Q2. From Lemma 2.1.4,
we can choose a projective isomorphism f : P3 → P3 such that f (Q1) =
Σ1,1. Assume that Q1 = Σ1,1, then Q1 ∩Q2

∼= s−1
1,1(Q2) ⊂ P1 ×P1. Let

G(z0, z1, z2, z3) := a1z2
0 + a2z2

1 + a3z2
2 + a4z2

3 + a5z0z1 + . . . + a10z2z3

be the quadratic form defining Q2, then s−1
1,1(Q2) is defined in P1 ×P1 by a

bi-homogeneous polynomial of bi-degree (2,2)

F(x0, x1; y0, y1) := G(x0y0, x0y1, x1y0, x1y1), (2.1)



2.2. CURVE AS AN INTERSECTION OF QUADRIC SURFACES 51

which is called the pullback of the polynomial G through s1,1.
Since Q1 ∩Q2 is isomorphic to an elliptic curve, let us denote it by C, we
consider C up to isomorphism. We want to find its j-invariant.
A standard result in the theory of algebraic curves is that there is the
bijection{

genus 1 curves up
to isomorphism.

}
←→

{
4-tuples of distinct points of P1

up to automorphism.

}
see for example in [92, 19.5].

Let π : C → P1 be any degree 2 morphism. Then the 4-tuple of points
associated to C are the branch locus of π that are, by definition, the points
P ∈ P1 such that #π−1(P) = 1.

Example 2.2.1. Let E be the elliptic curve defined by the equation y2z = f (x, z),
where f (x, z) = (x− az)(x− bz)(x− cz), let

E P1

[x : y : z] [x : z]

π

be a degree 2 map. The branch locus of π is the set {[1 : 0], [a : 1], [b : 1], [c : 1]}.

We have C ⊂ P1 ×P1 and suppose

C P1

(P, Q) P

π

be the projection in the first coordinate. Then the 4-tuple of points in P1

corresponding to C are the points P ∈ P1 such that #π−1(P) = 1. Now, we
write Equation 2.1 in the following form

F(x0, x1; y0, y1) = y2
0F0(x0, x1) + y0y1F1(x0, x1) + y2

1F2(x0, x1),

which is the defining polynomial of C. Then the branch locus of π is the set
of points P = [X0, X1] such that the equation

F(X0, X1; y0, y1) = 0

has single but repeated solution.
Therefore the discriminant of F(X0, X1; y0, y1) is zero and hence [X0, X1]

is the solution of the polynomial

H(x0, x1) := F1(x0, x1)
2 − 4F0(x0, x1)F2(x0x1).
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Writing

H(x0, x1) = q0x4
0 + q1x3

0x1 + q2x2
0x2

1 + q3x0x3
1 + q4x4

1

and defining

S := q0q4 −
q1q3

4
+

q2
2

12

T :=
q0q2q4

6
+

q1q2q3

48
−

q3
2

216
−

q0q2
3

16
−

q2
1q4

16
,

we get j(C) =
S3

S3 − 27T2 , the j invariant of the (2, 2) curve C. Also, H is

invariant under the action of GL(2), see for example in [2, 39, 76].

2.3 Segre and Veronese embeddings

We will define a non-standard Segre embedding as the composition of the
standard Segre embedding and a projective automorphism of the ambient
space of the codomain, which is represented by a square matrix.

Definition 2.3.1. Let n, m ∈ N. The non-standard Segre embedding and the
Segre variety represented by the matrix M in the general linear group GL((m +
1)(n + 1)) are respectively defined as

sM
n,m := M ◦ sn,m, ΣM

n,m := MΣn,m.

The smooth quadric surfaces of P3 are projectively isomorphic, therefore
they are ΣM

n,m for some m and n.

Example 2.3.2. Consider a non-standard Segre embedding

P1 ×P1 P3

([
x0
x1

]
,
[

y0
y1

]) 
x0y0 − 4x1y1
−7x1y0 + x1y1

x0y0 + 2x0y1 − x1y0 + 5x1y1
8x0y1 + x1y0



sM
1,1

which is represented by the matrix

M =


1 0 0 −4
0 0 −7 1
1 2 −3 5
0 8 −6 0

 .
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We also define the standard and non-standard Veronese embedding.

Definition 2.3.3. For n, m ∈N, the standard Veronese embedding are the mor-
phisms

Pn
P(n+m

m )−1

[x0 : · · · : xn] [xm
0 : · · · : xm

n ]

vn,m

where the monomials (xi0
0 · · · x

in
n )0≤ij≤m with ∑n

j=0 ij = m (of degree m) are
ordered by the lexicographical order. The images of these embeddings are called
standard Veronese varieties and they are denoted by Vn,m.

Suppose zi0,...,in be the variable in P(m+3
3 )−1 corresponding to the mono-

mial xi0
0 . . . xin

n in the Veronese map. Suppose,

C = c0, . . . , cn, D = d0, . . . , dn, E = e0, . . . , en, and F = f0, . . . , fn

be the indices of the coordinates of P(n+m
m )−1 such that C + D = E + F i.e.

c0 + d0 = e0 + f0, . . . , cn + dn = en + fn then in the images of the Veronese
map, we have the following relation of coordinates:

zC · zD − zE · zF = 0 (2.2)

Proposition 2.3.4. The standard Veronese variety is defined by the quadratic
equations given in Equation(2.2).

Proof. See in [80, Example 1.28].

Example 2.3.5. For the Veronese embedding

P1 P3

[x0 : x1] [x3
0 : x2

0x1 : x0x2
1 : x3

1]

v1,3

we have, v1,3(P
1) = V1,3 ⊂ P3, the image is defined by the following quadratic

equations
− z2

2 + z1z3,−z1z2 + z0z3,−z2
1 + z0z2 (2.3)

where [z0 : z1 : z2 : z3] is the coordinate of P3.

Similarly we define non-standard Veronese embedding as the composi-
tion of the standard Veronese embedding and a projective automorphism
of the ambient space of the variety.
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Definition 2.3.6. Let n, m ∈N. Let M ∈ GL((n+m
m )). Then

vM
n,m := M ◦ vn,m, VM

n,m := MVn,m

are defined respectively as the Veronese embedding and the Veronese variety repre-
sented by the matrix M.

We use the composition of the Segre embedding sM
1,1 and the Veronese

embedding vM
′

3,m in the application to cryptography. We define the compo-

sition vM
′

3,m ◦ sM
1,1 as a σ-embedding represented by a (m+3

3 )× (m+ 1)2 matrix.

Example 2.3.7. Let κ = F3 = {0, 1, 2} and m = 2 then (m+3
3 ) = 10. Consider

a non-standard Segre embedding

P1 ×P1 P3

([
x0
x1

]
,
[

x2
x3

]) 
−x0x2 + x0x3 + x1x3
x1x2 + x0x3 − x1x3
x0x2 − x1x2 + x1x3
−x0x2 + x0x3 + x1x3



sM
1,1

which is represented by the matrix

M =


2 1 0 1
0 1 1 2
1 0 2 1
2 1 0 1

 .

Suppose

vM
′

3,2 := M
′ ◦ v3,2,

where the map v3,2 ◦ sM
1,1

P1 ×P1 P9
v3,m ◦ sM

1,1
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maps to

[x2
0x2

2 + x2
0x2x3 + x0x1x2x3 + x2

0x2
3 − x0x1x2

3 + x2
1x2

3 : −x0x1x2
2 − x2

0x2x3−
x0x1x2x3 + x2

1x2x3 + x2
0x2

3 − x2
1x2

3 : −x2
0x2

2 + x0x1x2
2 + x2

0x2x3 − x0x1x2x3−
x2

1x2x3 + x0x1x2
3 + x2

1x2
3 : x2

0x2
2 + x2

0x2x3 + x0x1x2x3 + x2
0x2

3 − x0x1x2
3 + x2

1x2
3 :

x2
1x2

2 − x0x1x2x3 + x2
1x2x3 + x2

0x2
3 + x0x1x2

3 + x2
1x2

3 : x0x1x2
2 − x2

1x2
2 + x2

0x2x3+

x0x1x2x3 − x2
1x2x3 + x0x1x2

3 − x2
1x2

3 : −x0x1x2
2 − x2

0x2x3 − x0x1x2x3 + x2
1x2x3+

x2
0x2

3 − x2
1x2

3 : x2
0x2

2 + x0x1x2
2 + x2

1x2
2 − x0x1x2x3 + x2

1x2x3 + x2
1x2

3 : −x2
0x2

2+

x0x1x2
2 + x2

0x2x3 − x0x1x2x3 − x2
1x2x3 + x0x1x2

3 + x2
1x2

3 : x2
0x2

2 + x2
0x2x3+

x0x1x2x3 + x2
0x2

3 − x0x1x2
3 + x2

1x2
3].

Now applying the automorphism of P9 given by

M
′
=



2 1 1 1 1 2 2 1 2 1
2 1 0 0 1 2 1 2 1 1
2 1 0 0 2 1 2 1 2 1
2 1 2 1 1 1 0 2 2 1
2 1 0 0 1 0 0 2 0 2
1 0 2 0 2 1 0 1 0 0
0 2 0 0 2 1 1 2 1 0
2 0 2 1 1 0 2 0 2 1
1 1 0 0 2 2 1 1 1 0
1 1 0 2 1 1 1 1 1 1



we get the σ-embedding vM
′

3,m ◦ sM
1,1, which maps to

[x2
0x2

2 + x2
0x2x3 + x0x1x2x3 + x2

0x2
3− x0x1x2

3 + x2
1x2

3 : −x0x1x2
2− x2

0x2x3−
x0x1x2x3 + x2

1x2x3 + x2
0x2

3 − x2
1x2

3 : −x2
0x2

2 + x0x1x2
2 + x2

0x2x3 − x0x1x2x3 −
x2

1x2x3 + x0x1x2
3 + x2

1x2
3 : x2

0x2
2 + x2

0x2x3 + x0x1x2x3 + x2
0x2

3− x0x1x2
3 + x2

1x2
3 :

x2
1x2

2− x0x1x2x3 + x2
1x2x3 + x2

0x2
3 + x0x1x2

3 + x2
1x2

3 : x0x1x2
2− x2

1x2
2 + x2

0x2x3 +
x0x1x2x3− x2

1x2x3 + x0x1x2
3− x2

1x2
3 : −x0x1x2

2− x2
0x2x3− x0x1x2x3 + x2

1x2x3 +
x2

0x2
3 − x2

1x2
3 : x2

0x2
2 + x0x1x2

2 + x2
1x2

2 − x0x1x2x3 + x2
1x2x3 + x2

1x2
3 : −x2

0x2
2 +

x0x1x2
2 + x2

0x2x3 − x0x1x2x3 − x2
1x2x3 + x0x1x2

3 + x2
1x2

3 : x2
0x2

2 + x2
0x2x3 +

x0x1x2x3 + x2
0x2

3 − x0x1x2
3 + x2

1x2
3],
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and its 10× 9 matrix representation

M
′′
=



1 0 0 1 1 0 1 2 1
0 2 0 2 2 1 1 0 2
2 1 0 1 2 2 0 1 1
1 0 0 1 1 0 1 2 1
0 0 1 0 2 1 1 1 1
0 1 2 1 1 2 0 1 2
0 2 0 2 2 1 1 0 2
1 1 1 0 2 1 0 0 1
2 1 0 1 2 2 0 1 1
1 0 0 1 1 0 1 2 1


.

is obtained with respect to the monomial basis

{x2
0x2

2, x0x1x2
2, x2

1x2
2, x2

0x2x3, x0x1x2x3, x2
1x2x3, x2

0x2
3, x0x1x2

3, x2
1x2

3}.

2.3.1 Automorphism of Veronese Variety

It is easy to construct the automorphisms of the Veronese variety. This can
be obtained by using the homomorphism of general linear groups. Suppose
we have the standard Veronese embedding vn,m : Pn → P(n+m

m )−1.
Consider an action of A = (aij)0≤i,j≤n ∈ GL(n + 1) on the coordinates

of Pn as

xi 7→ Li :=
n

∑
j=0

aijxj, 0 ≤ i ≤ n

This action on coordinates induces a natural action on the monomials of
degree ∑n

k=0 ek = m as

xe0
0 · · · x

en
n 7→ Le0

0 · · · L
en
n

and can be represented by a matrix in GL((n+m
m )). More precisely, this

matrix is obtained by the action of A on the homogeneous polynomials of
degree m, written with respect to the monomial basis of the Veronese map.
This gives a natural group homomorphism

φn,m : GL(n + 1)→ GL(
(

n + m
m

)
).

Example 2.3.8. Take n = 1 and m = 2. Then the Veronese map is
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P1 P3

[x0 : x1] [x2
0 : x0x1 : x2

1].

v1,2

Consider A =

(
a b
c d

)
∈ GL(2) acting on the coordinates [x0 : x1] ∈ P1 as

x0 7→ ax0 + bx1

x1 7→ cx0 + dx1.

This corresponds to an action on the monomials of degree 2 as

x2
0 7→ a2x2

0 + 2abx0x1 + b2x2
1

x0x1 7→ acx2
0 + (ad + bc)x0x1 + bdx2

1

x2
1 7→ c2x2

0 + 2cdx0x1 + d2x2
1.

This gives the following matrix with respect to the monomial basis {x2
0, x0x1, x2

1}

φn,m(A) =

a2 2ab b2

ac ad + bc bd
c2 2cd d2

 .

The image of φn,m is a subgroup of GL((n+m
m )), which contains the

automorphisms of the ambient space P(n+m
m )−1 that fix the Veronese variety

Vn,m.
The automorphisms of the Veronese variety VM

n,m are given by the following
proposition.

Proposition 2.3.9. Aut(VM
n,m) = M Im(φn,m)M−1 for any M ∈ GL((m+3

3 )).

Proof. It follows from the equality

Aut(MV) = M Aut(V)M−1

for any projective subvariety V.
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Chapter 3

Computing isogenies from torsion
images

After a theorem of Tate [89], which states that two elliptic curves over a
finite field Fp are isogenous over Fp if and only if they have the same
number of Fp-rational points, a natural question is to find an isogeny be-
tween them. An algorithm proposed first by Schoof [77, 78], and later
improvements by Elkies [41], Atkin [3], now known as Schoof-Elkies-Atkin
(SEA), count the number of points on an elliptic curve over a finite field and
hence give an efficient way to determine whether two elliptic curves are
isogenous or not. Moreover, having a wide range of application in isogeny
based cryptography as discussed in Section 1.4 and point counting algo-
rithms, computing isogeny between elliptic curves over finite fields have
appealed many researchers. The small degree isogenies, in size O(log(p)),
which are useful in point counting, were studied, for example, in [4, 41]
[25, 26, 43, 44, 42, 45].
The large degree isogenies, in size O(p) are useful in isogeny based cryp-
tography. A study of such isogenies was initiated by Galbraith in [47] and
further improved in [49] and in [34]. The quantum variants of such isogeny
problems were studied in [22, 13] and the specialized versions to compute
isogeny for the supersingular elliptic curve was developed by Petit in [71]
under the assumption that some information of the isogeny, more specifi-
cally, the image on a torsion subgroup under the isogeny, are known. This
work was further improved in [61] and got some weak instances of some
variants of SIDH but not that of the SIDH itself. Their work leverages the
SIDH scenario.

In this chapter, we first review an isogeny computation problem in-
troduced by Petit, and give a polynomial-time algorithm to construct an
endomorphism of a supersingular elliptic curve defined over Fp given only

59
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the action on torsion subgroup under certain parameter restriction and
heuristic assumptions. Our main contributions in this chapter are Theorem
3.2.23, Theorem 3.3.4 and Algorithm 3.3.5.

3.1 Isogeny computation using torsion images

In this section, we review a technique to compute an isogeny using torsion
point images from [71].
The following problem is the general type of isogeny problem for supersin-
gular elliptic curves.

Problem 3.1.1. Let E0, E be two supersingular elliptic curves defined over the
finite field Fp2 and there is an isogeny φ : E0 → E between them. Compute an
efficient expression of φ.

Solutions of Problem 3.1.1 can break the SIDH. But, a more specific
problem that occurs in SIDH is the following:

Problem 3.1.2. Let E0, E be supersingular elliptic curves defined over Fp2 . Let
M, N be integers with gcd(M,N)=1 and suppose φ : E0 → E be a degree M
isogeny whose images are known on N-torsion subgroup E0[N] of E0 i.e. φ(P) for
all P ∈ E0[N] are known. Compute an efficient expression of φ.

In SIDH, the isogeny φ is known on the basis of E0[N] but these images
on the basis can be used to evaluate φ on the whole E0[N]. Any algorithm
that can solve Problem 3.1.2 can break the SIDH due to [50]. Therefore,
such a problem is interesting in SIDH/SIKE like environment.

We summarize the main idea to deal with Problem 3.1.2 from [71]. Sup-
pose E0, E be supersingular elliptic curves defined over Fp2 and φ : E0 → E
be a degree M isogeny which is known on the N-torsion subgroup of E0
with gcd(N, M) = 1. Unlike SIDH, where small prime powers are used
instead of M and N, here we suppose M and N be any powersmooth
numbers, where a number M = ∏ pai

i is called a B-powersmooth for some
integer B if pai

i < B. Furthermore, the prime p is not restricted to the
special form p = MN f ± 1. If M and N are chosen arbitrarily, then the
M, N-torsion points may not be defined in Fp2 . Therefore, we consider
M, N are powersmooth numbers so that the M, N-torsion points can be
represented efficiently as described by an algorithm in [51].

There are three main steps:
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1. (Find an endomorphism of E0). Search for a non-scalar endomor-
phism µ of E0 and an integer d such that the corresponding endomor-
phism ν = φ ◦ µ ◦ φ̂ + [d] of E is of degree Ne with e ≥ 1 be an integer
as small as possible. See Figure 3.1.

2. (Compute an endomorphism of E). Compute ν in the form ν = ψ ◦ νN ,
where νN and ψ are isogenies of degree N and e respectively.

3. (Obtain φ from ν− [d] = φ ◦ µ ◦ φ̂). Recover the kernel of φ from that
of ν− [d].

E0 E

µ
φ

φ̂

Figure 3.1: Torsion point attack

3.1.1 Find an endomorphism of E0

A suitable non-scalar endomorphism of E0 is calculated so that the endo-
morphism ν = φ ◦ µ ◦ φ̂ + [d] of E is of degree Ne with e small. This degree
expression helps to find the endomorphism ν explicitly.

When E0 is special curve. E0 is called special if it is defined over Fp
and End(E0) contains a small degree non-scalar endomorphism. Suppose
E0 be a special curve and ι be a trace zero endomorphism of E0 of degree
r. In this case Z[πp, ι] ⊂ End(E0), where πp is the p-th power Frobenius
map.
Let us write

ν = φ ◦ µ ◦ φ̂ + d ∈ End(E),

where µ = aιπp + bπp + cι ∈ End(E0), such that the degree

deg ν = M2pra2 + M2pb2 + M2rc2 + d2 = Ne. (3.1)

In this case, the attack works for the optimal degree variant explained in
1.4.3 under the following parameters restrictions
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• N > M4 ≈ p4

• N is a square modulo M2.

Under these restrictions, a way to solve Equation 3.1 is to start with as-
signing value e = 1, if this fails then replace it by another bigger square in
Z/M2Z. For chosen e, find a value of d satisfying the congruence relation

d2 = Ne (mod M2).

Choose a value of d such that

r
Ne− d2

M2 is square (mod p).

Now, with given e and d, assign some values of c until the right hand side
of the equation

ra2 + b2 =
Ne− d2 −M2rc2

M2p

is positive and hence can be solved efficiently by using Cornacchia’s algo-
rithm [23]. Values of a, b, c determine µ and together with the value of d
ensure that the degree of ν is Ne.

3.1.2 Find an endomorphism of E

From the discussion in the previous subsection, an endomorphism µ of E0
can be found such that the degree of the endomorphism ν = φ ◦ µ ◦ φ̂ +
[d] ∈ End(E) is of the form Ne. The knowledge of the degree expression
Ne helps to find the endomorphism ν in a form ν = ψ ◦ νN such that
deg ψ = e and deg νN = N. Since the action of the isogeny φ is known
on N-torsion subgroup of E0, this can be used to get the action of the
endomorphism ν on the N-torsion subgroup of E.
Suppose νN : E→ E

′
. Using the action of ν on N-torsion points, it is easy

to compute the kernel of νN of order N. Now, by meet in middle attack,
applying between E

′
and E, the isogeny ψ can be recovered easily whenever

e is small. See Figure 3.2.

3.1.3 Obtain φ from ν− [d]

Once the endomorphism ν = φ ◦ µ ◦ φ̂ + [d] of E is known, ker φ can be
recovered from the kernel of ν− [d] = φ ◦ µ ◦ φ̂. Suppose deg µ is coprime
with M.
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E E′

νN

ψ

Figure 3.2: An endomorphism ν = ψ ◦ νN of E of degree Ne, where deg
ψ = e and deg νN = N.

Suppose H = ker (φ ◦ µ ◦ φ̂) ∩ E[M]. Since φ̂ : E → E0 is an isogeny of
degree M, its kernel ker φ̂ is a cyclic subgroup of order M. When H is
cyclic then H = ker φ̂ and ker φ can be recovered from H. Suppose H
is not cyclic. Let m be the largest integer such that E[m] ⊂ H. Then the
isogeny φ can be seen as a composition of an isogeny φm : E0 → Em and
φ̂M/m : Em → E as

φ = φ̂M/m ◦ φm,

see Figure 3.3.

E0 Em E

µ
φm

φM/m

φ

φ̂

Figure 3.3: The isogeny φ = φ̂M/m ◦ φm : E0 → E as the composition of two
isogenies φm : E0 → Em and φ̂M/m : Em → E.

Then the kernel of φM/m is obtained by intersecting the kernel of ν with
E[M].

Lemma 3.1.3. The kernel of φM/m is mH, where

H = ker (φ ◦ µ ◦ φ̂) ∩ E[M].

Proof. See in [71, Lemma 4].
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Now, it remains to find the kernel of φm, which can be obtained by a
few possible attempts when m has few prime factors due to the following
lemma.

Lemma 3.1.4. The endomorphism µ stabilizes the subgroup ker φm ⊂ E0 i.e.

µ(ker (φm)) = ker(φm)

and if t be the number of distinct prime divisors of m then the number of cyclic
subgroups of E0[m] of order m that are stabilized by µ is 2t.

Proof. See in [71, Lemma 5].

By assumption M is smooth, therefore it is easier to find the kernel of
φm.

3.1.4 An improvement in isogeny computation using tor-
sion images

The isogeny computation algorithm discussed above works well with some
restriction of parameters and when E0 is special curve. More specifically,
the following is true from [71].

Proposition 3.1.5. Let M and N are two relatively prime powersmooth numbers
such that N ≈ M4 > p4 and N is a square modulo M2. Let φ : E0 → E be a
degree M isogeny whose action on N-torsion points are known. Then φ can be
computed in polynomial time when E0 is special.

On the other hand, SIKE requires M ≈ N ≈ p1/2. In [61], the parameters
assumption N ≈ M4 > p4 is relaxed to N > M3 > p3/2 or N > M2 > p2.
This improvement is coming from a small tweak in the following equation

deg ν = deg (φ ◦ µ ◦ φ̂ + d) = M2pra2 + M2pb2 + M2rc2 + d2 = Ne

by changing N by N2 as follows

M2pra2 + M2pb2 + M2rc2 + d2 = N2e. (3.2)

Furthermore, the following theorem given in [61] ensures that the change
of N by N2 does not affect the complexity of the algorithm.

Theorem 3.1.6. Let M, N be coprime powersmooth integers. Let E0 be a supersin-
gular elliptic curve over Fp2 . Suppose φ : E0 → E be a degree M isogeny whose
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action on N-torsion points of E0 is known. Moreover, suppose there exists a trace
zero endomorphism µ of E0 and an integer d with gcd(d, N) = 1 such that

deg (φ ◦ µ ◦ φ̂ + [d]) = N2e.

Then φ can be computed in complexity O(
√

e polylog(p)).

Torsion point attack is further improved for SIDH variants in [33] that
includes many weak parameter sets. For instance, they provide polynomial-
time algorithm when the curve E0 has j-invariant 1728, N > pM, p > M or
N >

√
pM2, p > M, M has at most O(log log p) distinct prime factors and

N is at most polynomial in M. Further impact of this torsion point attack
covers an attack to a group key agreement [5] and to B-SIDH [24].
Moreover, for some variants of SIDH, the abelian group action on the SIDH
key space can be computed using torsion point information [62].

3.2 Simon’s Algorithm for dimension 5

We describe an algorithm of Denis Simon [84] to solve quadratic equations
in dimension 5. We will further analyze the complexity when the factoriza-
tion of the determinant is known.
Before that we give a brief preliminary from [16, 79].

3.2.1 Hilbert symbol and Witt invariant

Definition 3.2.1. Let K be either the field R of real numbers or the field Qp of
p-adic numbers for prime p. Let a, b ∈ K∗ then the Hilbert symbol (a, b)K is
defined as

(a, b)K =

{
1 if ax2 + by2 − z2 = 0 has a solution (x, y, z) 6= (0, 0, 0) in K3

−1 otherwise.

Hilbert symbol has the following properties.

Lemma 3.2.2. Let a, b, c ∈ K∗, where K = R or Qp then

• (a, b)K = (b, a)K.

• (a2, b)K = 1.

• (a,−a)K = (a, 1− a)K = 1 if a 6= 1.

• (a, a)K = (a,−1)K.
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• (a, bc)K = (a, b)K(a, c)K.

Proof. See in [79, Proposition 2].

The last property of the previous lemma shows the bilinearity of the
Hilbert symbol.

Theorem 3.2.3. The Hilbert symbol is a nondegenerate bilinear form on the
F2-vector space K∗/K∗2.

Proof. Follows from Lemma 3.2.2.

Definition 3.2.4. Let V be a module over a commutative ring R. A function
Q : V → R is called a quadratic form on V if

• Q(rx) = r2Q(x) for r ∈ R and x ∈ V

• the function (x, y) 7→ Q(x + y)− Q(x)− Q(y) is a bilinear form. The
pair (V, Q) is called a quadratic module.

If R = K is a field of characteristic 6= 2 then V is a K-vector space and
we can define a scalar product on V as

x · y =
1
2
{Q(x + y)−Q(x)−Q(y)}.

The map (x, y) 7→ x · y is a symmetric bilinear form on V. We have

Q(x) = x · x.

This gives a correspondence between quadratic forms and symmetric bilin-
ear forms.

Definition 3.2.5. (Matrix of a quadratic form.) Let (ei)1≤i≤n be a basis of V. The
matrix of Q with respect to this basis is the symmetric matrix

A = (aij) where aij = ei · ej.

If x = ∑ xiei ∈ V, then

Q(x) = ∑
i,j

aijxixj

is a quadratic form in x1, . . . xn.
If the basis (ei) is changed by an invertible matrix B then the new matrix
A
′

of Q with respect to new basis is BABt and

det(A
′
) = det(A)det(B2).
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Definition 3.2.6. An element x of a quadratic module (V,Q) is called isotropic if
Q(x) = 0. A subspace of V is called isotropic if all the elements are isotropic.

Definition 3.2.7. (Orthogonal sum.) Let (V1, Q1), . . . , (Vn, Qn) be quadratic
modules. The orthogonal sum V1 ⊕ . . . ⊕ Vn is defined to be the direct sum of
modules Vi with quadratic form Q := Q1 ⊕ . . .⊕Qn defined by

Q(x1 ⊕ · · · ⊕ xn) = ∑
i

Qi(xi).

Definition 3.2.8. Let (V, Q) be a quadratic module over a field K. Two elements
x, y ∈ V are orthogonal if x · y = 0. If V1 and V2 are two vector subspaces of V
they are said to be orthogonal if

x · y = 0 for all x ∈ V1 and y ∈ V2.

A basis (e1, . . . , en) of a quadratic module (V, Q) is called orthogonal
if its elements are pairwise orthogonal. In this case, the matrix of Q with
respect to this basis is a diagonal matrix

a1 0 . . . 0
0 a2 . . . 0

. . . . . .
0 0 . . . an

 (3.3)

If x = ∑ xiei then Q(x) = a1x2
1 + . . . + anx2

n.
Let f (X) = ∑n

i=1 aiiX2
i + 2 ∑i<j aijXiXj be a quadratic form in n variables

over a field K, taking aij = aji if i > j then the matrix A = (aij) is symmetric.
Then the pair (Kn, f ) is a quadratic module associated to f .

Definition 3.2.9. Two quadratic forms f and f
′

are called equivalent if the corre-
sponding modules are isomorphic.

Theorem 3.2.10. [79] Let f be a quadratic form in n variables. Then there exist
a1, . . . , an ∈ K such that f is equivalent to a1X2

1 + . . . + anX2
n.

Proof. See in [79, Theorem 1
′
].

The rank of a quadratic form f is the number of indices i such ai 6= 0
and the signature is (r, s), where r and s are the number of ai’s that are
positive and negative respectively. A quadratic form with signature (n, 0)
(respectively (0, n)) is positive (negative) definite.
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Definition 3.2.11. (Witt invariant.) Let K be the field Qp for some prime p
and (V, Q) be a quadratic module of rank n and discriminant ∆. Suppose e =
{e1, . . . , en} be an orthogonal basis for V. Suppose ai = ei · ei then ∆ = a1 · · · an
and the Witt invariant of (V, Q) denoted as εp(Q) and is defined as

εp(Q) = ∏
i<j

(ai, aj)Qp .

Theorem 3.2.12. The number εp(Q) does not depend on the choice of the orthog-
onal basis of V.

Proof. See in [79, Theorem 5].

3.2.2 Solution for dimension 5

Let Q0(X) = XtQ0X be a quadratic form over Z5, where Q0 = (bi · bj) ∈
M5(Z) be its symmetric matrix according to a basis {b1, · · · , b5}.

Algorithm 3.2.13. [84] (Simon’s algorithm for dimension 5.) Let Q0 ∈ M5(Z)
be a symmetric matrix of determinant ∆0 6= 0 whose factorization is known. This
algorithm either finds an isotropic subspace of Q0 of maximal dimension or no
solution.

1. Compute the signature (r, s) of Q0. If r = 0 or s = 0 then there is no real
solution. Ensure s < r, if r < s replace Q0 by −Q0 and exchange r and s.

2. For each prime divisor p of ∆0, use Minimization algorithm 3.2.22 to mini-
mize Q0 (its discriminant). Call Q and ∆ as the minimized matrix and the
minimized determinant respectively.

3. If ∆ = ±1, apply Algorithm 3.2.15 to find a isotropic subspace of dimension
s for Q. Retrieve an isotropic subspace for Q0 with the same dimension.

4. Suppose δ = −8|∆|. Calculate generators a1, a2, . . . ar of the 2-sylow sub-
group of the class group cl(δ) of primitive quadratic forms with discriminant
δ using the algorithm from [14].

5. For all divisors p of ∆ and for all generators ai, find Witt invariants εp(ai)

and an element a = ∏ a
αi
i such that

εp(a) = −
(
(−1)(n−1)/2+s × 2, p

)
Qp

for all p dividing ∆.
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6. Write the quadratic form as a = (a, 2b, c) and

Q
′
2 =

(
a b
b c

)
.

7. Define Q7 = Q⊕−Q
′
2. Let E be the subspace Q5 of Q7. Minimize Q7

using Minimization algorithm 3.2.22. Suppose Q
′
7 be the corresponding

minimized matrix, with determinant ±1.

8. Use Algorithm for unimodular 3.2.14 to find a isotropic subspace F for Q
′
7

of dimension m = min(r, s + 2) ≥ 3.

9. Find the intersection G = E ∩ F of dimension v = m− 2 ≥ 1 and find a
subspace of dimension v, which is isotropic for Q0.

3.2.3 Algorithm for unimodular matrix

In this subsection, we describe the Simon’s algorithm to solve a quadratic
form of determinant ±1.

Algorithm 3.2.14. (A solution in unimodular case.) Let Q ∈ M5(Z) be a
symmetric matrix with determinant ∆ = ±1 and signature (r, s). The following
algorithm determines a non trivial solution of Q(x) = 0 if it exists.

1. If r = 0 or s = 0 there is no solution.

2. Use the reduction algorithm from [85]. This algorithm either reduces the
quadratic form Q or stops with some isotropic vector, if such a vector is
found, return it.

3. Find the Gram-Schmidt orthogonal basis (b∗k )1≤k≤5 associated to Q.

4. Set d0 = 1. For k = 1 . . . 5, compute

dk = det(Qi,j)1≤i≤k,1≤j≤k.

5. If di
di−1

= − dj
dj−1

for some i 6= j then return b∗i + b∗j .

The following recursive algorithm is used to find a maximal isotropic
subspace of dimension m = 1 or 2 with basis a {b1, ..., b2m−1}.
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Algorithm 3.2.15. (Isotropic subspace in unimodular case.) Let Q ∈ M5(Z) be
a symmetric matrix with determinant ∆ = ±1 and signature (r, s). The following
algorithm finds a basis {b1, ..., b2m−1} of Z5 such that in this basis Q takes the
form Q = H⊕m ⊕ D where m = min(r, s), D is a positive or negative definite

quadratic form of dimension 5− 2m, and H =

(
0 1
1 0

)
or =

(
0 1
1 1

)
.

1. If r = 0 or s = 0 or n ≤ 1, return D = Q

2. Using Algorithm 3.2.14 find a solution of xt
1Qx1 = 0. Choose a new basis

x1 . . . x5 including x1.

3. Find a new basis of Q such that Q has the form Q = H ⊕Q
′

where

H =

(
0 1
1 ε

)
with ε = 0 or 1. Q′ has dimension 3, determinant det(Q

′
) = −det(Q) and

signature (r− 1, s− 1).

4. Apply again this algorithm for Q
′
, denote the resulting matrix by R. Return

H ⊕ R.

3.2.4 An algorithm for minimization :

Let Q ∈ M5(Z) be a symmetric matrix of determinant ∆ 6= 0. An aim of
this algorithm is to minimize the determinant of Q, reducing either to±1 or
as small as possible by using linear algebra over Q keeping the coefficient
in Z.
We work successively for each divisor of ∆. Let p be a divisor of ∆ and
valp(∆) = v be the valuation of ∆ at p. Further assume that Q is the
reduction of Q mod p and d = dimFpkerQ be the dimension of kerQ. Then
1 ≤ d ≤ 5 and d ≤ v. After a linear transformation on Q, assume first d
columns are divisible by p and then we can write as

Q =

(
pQ̃ p∗
p∗ U

)
where Q̃ = ( 1

p Qi,j)1≤i,j≤d and U ∈ M5−d(Z), is an invertible matrix mod-
ulo p.
The following lemmas, which are proved in [84], are used for the mini-
mization of the determinant, which will be used according to the values
of d and v. Here we only give the idea from [84] to compute a matrix M
corresponding to a basis change of Q.
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Lemma 3.2.16. If d = 5, then Q
′
= 1

p Q ∈ M5(Z) and det Q
′
= p−5∆.

Lemma 3.2.17. If d < v, then there exists an integer d̃ with 1 ≤ d̃ ≤ d and a
matrix M ∈ M5(Q) such that Q

′
= MtQM ∈ M5(Z) with det Q

′
= p−2d̃∆.

Proof. Let d̃ be the dimension of the matrix Q̃ modulo p, then 1 ≤ d̃ ≤ d. By
a change of basis we get the first d̃ columns of Q̃ are divisible by p. Extend
this basis change to Q. The required matrix M can be taken as a diagonal
matrix with first d̃ coefficients equal to 1/p and the remaining coefficients
equal to 1.

Lemma 3.2.18. If d = v is even and d ≥ 2, then there exists a matrix M ∈
M5(Q) such that Q

′
= 1

p MtQM ∈ M5(Z), Q
′

/∈ Mn(pZ) with det Q
′
=

p5−2d∆.

Proof. The Matrix M can be taken as a diagonal matrix with first d coeffi-
cients equal to 1 and the remaining coefficients equal to p.

Lemma 3.2.19. If d = v and d ≥ 3, then there exists a matrix M ∈ M5(Q)

such that Q
′
= MtQM ∈ M5(Z) with det Q

′
= p−2∆.

Proof. By a change of the basis, the first coefficient of Q̃ is divisible by p.
Extend this basis to Q. Then we can choose M as a diagonal matrix with
first coefficient 1/p and remaining coefficients equal to 1.

Lemma 3.2.20. If d = v = 2 and if−det Q̃ is a square modulo p, then there exists
a matrix M ∈ M5(Q) such that Q

′
= MtQM ∈ M5(Z) with det Q

′
= p−v∆.

Proof. Similar to Lemma 3.2.19.

Let m be the maximum dimension of a isotropic subspace for U mod p.

Lemma 3.2.21. Let d = v = 1. If m = (5− d)/2, then there exists a matrix
M ∈ M5(Q) such that Q

′
= 1

p MtQM ∈ M5(Z) with det Q
′
= p−v∆.

Proof. We can choose M as a diagonal matrix with first d + m coefficients
equal to 1 and the remaining coefficients equal to p

Algorithm 3.2.22. (Minimization algorithm.) This algorithm provides linear
transformations on Q to minimize the determinant ∆ 6= 0 of a symmetric matrix
Q ∈ M5(Z). For each divisor p of ∆, perform the following transformations.

1. Apply Lemmas 3.2.16,3.2.17,3.2.18,3.2.19,3.2.20, and 3.2.21 as long as they
are applicable.
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2. Return the new matrix Q ∈ M5(Z) and the matrix M ∈ M5(Q) of the
corresponding basis change.

We observe the following

Theorem 3.2.23. Simon’s algorithm for a quadratic equation of dimension 5
3.2.13 requires time polynomial in log |∆|, where ∆ is the determinant of the
matrix Q representing the quadratic form, when the entries of Q are in Õ(∆) and
the factorization of ∆ is known.

Proof. Simon’s algorithm to solve a symmetric quadratic form of dimen-
sion 5 discussed in 3.2 consists of three main algorithms: Algorithm for
minimization 3.2.22, Algorithm for unimodular case 3.2.14 and algorithm
from [14] to compute generators of the 2-Sylow subgroups.
In the algorithm for minimization, we need to perform linear transforma-
tions (Lemmas 3.2.16 to 3.2.21) on 5× 5 matrix Q for each of the prime
divisor of the determinant of Q, this can be done in polynomial time.
The algorithm for unimodular case uses an algorithm from [85] to find a
solution. If a solution exists, this algorithm finds a solution in polynomial
running time [85] when the discriminant of the Gram matrix is known.
Other steps require some linear transformations on Q and computation of
Gram-Schmidt orthogonal basis, which are easy to compute.
In order to obtain generators of the 2-Sylow subgroups of the class group
cl(∆), we can use algorithm from [14], which requires polynomial time in
log |∆|.

3.3 Endomorphism under known torsion images

Given an elliptic curve E, computation of an endomorphism of E is an inter-
esting problem both in number theory and in isogeny based cryptography.
If we can compute the endomorphism ring of a supersingular elliptic curve,
then there is a polynomial-time attack using quaternion algebra [51, 59] to
the pure isogeny problems like the Problem 3.1.1. Briefly, to solve Problem
3.1.1, construct the endomorphism ring of both the curves E0 and E, find a
connecting ideal joining two endomorphism rings and translate the ideal
into an isogeny path to get an isogeny between E0 and E1 as given in [59].
As observed in [50] such an isogeny is sufficient to break the SIDH.
In this section, we consider an endomorphism computation problem but
with some extra information as studied in [71]. To be precise, the action
of an endomorphism on some torsion subgroup is given. Such a problem
looks like the following
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Problem 3.3.1. Let E be a supersingular elliptic curve defined over a finite field
Fp2 . Let M, N be integers with gcd(M,N)=1 and φ be an endomorphism of E of
degree M whose action on N-torsion subgroup of E is known. Compute an efficient
expression of φ.

3.3.1 Endomorphism of E when only Z ⊂ End(E) is known

In this subsection, we briefly recall an idea from [71] to solve Problem 3.3.1
under the assumption that only endomorphisms that are multiplication by
integers are known.
Suppose, E be a supersingular elliptic curve defined over a finite field Fp2 .
Let φ be an endomorphism of E of degree M whose action on N-torsion
subgroup of E is known, where gcd(N, M) = 1.
Write ν = aφ + d with a, d ∈ Z such that the degree of ν is Ne i.e

deg ν = a2 deg φ + d2 + ad Trφ = Ne

or
(d + a Trφ/2)2 + a2(degφ− ( Trφ/2)2) = Ne (3.4)

Solve Equation 3.4 for a, d such that e is as small as possible. One way to
solve this equation is to impose the following condition on parameters

i. N > 2
√

M,

ii. there exists u such that u2 ≡ −B mod N, where B = degφ− (Trφ/2)2.

First, Tr φ can be calculated under the assumption (i). We have φ̂ ◦ φ = [M]
and φ + φ̂ = Tr φ. The action of φ is known on E0[N] by assumption. Also
φ is bijective on E0[N] because gcd(N, M) = 1, therefore the inverse φ−1 is
well defined and the images of the dual φ̂ is known on E[N]. As a result,
the trace Trφ is known on E0[N] and some discrete logarithm solutions are
enough to obtain Trφ mod N. Furthermore, the relation Trφ ≤ 2

√
deg φ

yields Trφ since N > 2
√

M.
Second, Equation 3.4 can be solved under the assumption in (ii). Consider a
lattice Λ generated by two vectors (N, 0) and (u, 1). Any point in Λ satisfies
the equation x2 + By2 ≡ 0 mod N. A reduced basis can be computed by
taking a weighted inner product norm weighted the second component by√

B. Then we can choose a short vector so that the parameters give solution
to Equation 3.4 with e small.
Under the following heuristic assumption on the size of the solution of
x2 + By2 ≡ 0 mod N :

xy ≈ N and x2 ≈ By2 ≈ Ne,
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a solution is expected to exist with e ≈
√

M.
Any such solution ensures the degree of the endomorphism ν = aφ + d
in the form Ne and using the technique from Subsection 3.1.2, ν can be
expressed as ν = ψ ◦ νN with deg ψ = e and deg νN = N. Therefore, the
required endomorphism is in the form φ = (ψ ◦ νN − d)/a.

3.3.2 An endomorphism of E/Fp under some known tor-
sion images

In this section, we propose a new algorithm to solve Problem 3.3.1 for
computing an endomorphism but considering the elliptic curve E to be
defined over a finite Fp.
Let E be a supersingular elliptic curve defined over the finite field Fp. Let φ
be an endomorphism of E of degree M whose action on N-torsion subgroup
of E is known, where gcd(N, M) = 1. Suppose πp : (x, y) → (xp, yp)

be the pth-power Frobenius endomorphism of E. We fix parameters as
N > 2

√
Mp. With this parameters restriction, we hope to get a solution as

in Lemmas 3.3.2 and 3.3.3. More precisely, we want to find a solution of
Equation 3.5 with e = O(1).
Substitute φ

′
= φ− Trφ

2 with φ so that Trφ
′
= 0. Let

δ := deg φ
′
= M− 1

4
(Trφ)2.

Consider an endomorphism of the form

ν = (aφ
′
+ b)πp + cφ

′
+ d

of degree

deg ν =(a2δ + b2)p + (c2δ + d2) + Tr((aφ
′
+ b)πp(−cφ

′
+ d))

=(a2δ + b2)p + (c2δ + d2) + (ad− bc)Tr(φ
′
πp),

where a, b, c, d ∈ Z. The relation N > 2
√

Mp allows us to evaluate Tr(φ
′
πp)

as in Subsection 3.3.1. We want the degree of ν to be Ne i.e.

(a2δ + b2)p + (c2δ + d2) + (ad− bc)Tr(φ
′
πp) = Ne (3.5)

with e is as small as possible. Now, the problem is to find, a, b, c, d, e ∈ Z

satisfying Equation (3.5). Since there is no known method to solve this
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equation in integer, we modify this equation by introducing a new variable
f as

pδa2 + pb2 + δc2 + d2 + Tr(φ
′
πp)ad− Tr(φ

′
πp)bc− N f 2 = 0 (3.6)

Now, the problem of finding an endomorphism µ reduces to a problem
of solving a homogeneous quadratic equation 3.6 in a, b, c, d, f ∈ Z. A
problem is to solve this equation such that f is as small as possible. If
we get such a solution, then there exists an endomorphism ν of degree
deg ν = N f 2.
Equation 3.6 represents a quadratic form, say its matrix be Q with integer
entries such that

XtQX = 0, (3.7)

where

Q =


pδ 0 0 Tr(φ

′
πp)/2 0

0 p −Tr(φ
′
πp)/2 0 0

0 −Tr(φ
′
πp)/2 δ 0 0

Tr(φ
′
πp)/2 0 0 1 0
0 0 0 0 −N

 ,

which is a symmetric matrix of determinant ∆ = −N(pδ− (Tr(φ
′
πp))2)2.

We solve for an integer solution Xt ∈ Z5 with f is small.
The symmetric quadratic form can be solved for integer values by using
the algorithm given in Section 3.2 or in [85] of Denis Simon when the
factorization of ∆ is known. This algorithm is implemented in a computer
algebra system PARI/GP [9] by the author himself and is given in his
website. If the factorization of ∆ is unknown then still the quadratic form
can be solved by using an algorithm of Castel [17].
From the knowledge of the degree expression as degν = N f 2, we can
calculate ν = ψ f 2 ◦ νN, where the degree N isogeny νN can be computed
by using the torsion images of ν on E[N] and the degree f 2 isogeny by the
meet in the middle technique as in Section 3.1.2.

Parameters sizes are estimated based on some heuristic assumptions.

Lemma 3.3.2. There do not exist solutions of Equation 3.6 when Mp < N and
heuristically there exist values of M and N with Mp ≈ N such that a solution of
Equation 3.6 with f = O(1) is expected to exist, in particular when N ≈ p2 and
M ≈ p3.
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Proof. From Equation 3.5, we have

(a2δ + b2)p + (c2δ + d2) + (ad− bc)Tr(φ
′
πp) = N f 2.

For the minimal solution, we expect heuristically the parameters sizes as

a2pM ≈ b2p ≈ c2M ≈ d2 ≈ f 2N and abcd ≈ N where δ ≈ M.

This gives,

a ≈ f N1/2p−1/2M−1/2, b ≈ f N1/2p−1/2

c ≈ f N1/2M−1/2 and d ≈ f N1/2.

Therefore,
N ≈ abcd ≈ f 4N2M−1p−1

or,

f 4 ≈ Mp
N

.

For the a choice M ≈ p2 and N ≈ p3, we get
f 4 = O(1).

Now, we use the technique used in [61] to improve the size of the
parameters. We replace N by N2 in Equation 3.5

(a2δ + b2)p + (c2δ + d2) + (ad− bc)Tr(φ
′
πp) = N2 f 2. (3.8)

Following the similar size estimation as in Lemma 3.3.2, we get the param-
eters as follows

Lemma 3.3.3. There do not exist solutions of Equation 3.8 when Mp < N2 and
heuristically there exist values of M and N with Mp ≈ N2 such that a solution of
Equation 3.8 with f = O(1) is expected to exist, in particular when N ≈ p and
M ≈ p.

From any integer solution of Equation 3.8, we learn the degree expres-
sion as deg ν = N2 f 2. We want to decompose the endomorphism ν as the
composition of two isogenies of degree N and one isogeny of degree f 2.
For this, we use the technique from Theorem 3.1.6 and hence we have the
following theorem.
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Theorem 3.3.4. Let E be a supersingular elliptic curve defined over a finite field
Fp. Let φ be an endomorphism of E of degree M whose action on N-torsion
subgroup of E is known, where gcd(N, M) = 1 and N > 2

√
Mp. Suppose

πp : (x, y)→ (xp, yp) be the pth-power Frobenius endomorphism of E. Substitute,
φ
′
= φ− Trφ

2 . Then an endomorphism of the form

ν = (aφ
′
+ b)πp + cφ

′
+ d

of E with deg(ν) = N2e and gcd(a Tr(φ
′
πp) + 2d, N) = h, where h is a

small integer and e = O(1), is expected to determine according to the heuristic
assumption of Lemma 3.3.3. Also with deg(ν) = Ne, e = O(1) and under the
assumption of Lemma 3.3.2, such endomorphism is expected to obtain. In those
cases, φ can be computed in complexity O( polylog(p)).

Proof. When deg(ν) = Ne, the endomorphism φ can be determined as in
Subsection 3.1.2.
Suppose deg(ν) = N2e. By using the action of φ on E[N] and under the
assumption N > 2

√
Mp > 2

√
M, the trace Trφ can be computed and hence

the action of ν on E[N] can be computed. Since the degree of ν is N2e, it can
be written as the composition ν = ν

′
N ◦ φe ◦ νN, where ν

′
N, νN are isogenies

of degree N and φe is of degree e isogeny. The isogeny νN can be computed
by using the action of ν on N torsion subgroup of E as in Subsection 3.1.2.
To compute the isogeny ν

′
N, we use the fact that ν(E[N]) ⊆ ker ν

′
N this is

true because ν̂
′
N ◦ ν = [N] ◦ φe ◦ νN. Furthermore, if ν is decomposes as

ν
′ ◦ [s] for some endomorphism ν

′
and a divisor s of N then s divides h

because gcd(a Tr(φ
′
πp) + 2d, N) = h. Now by the brute force search for

the possible h isogenies, ker ν
′
N can be calculated. Finally, for each possible

ν
′
N, a generic meet in middle search can be applied to recover φe.

Solutions of Equation 3.8 gives an expression of the degree of the en-
domorphism ν = (aφ

′
+ b)πp + cφ

′
+ d as N2 f 2. Now, using the fact that

it is known on the N-torsion subgroup of E, Theorem 3.3.4 can be used to
compute ν in a form ν

′
N ◦ φ f 2 ◦ νN, where ν

′
N, νN are of degree N and φ f 2 is

of degree f 2 isogenies under an assumption gcd(a Tr(φ
′
πp) + 2d, N) = h

with h small. An expression of φ
′

takes the form

φ
′
=

ν
′
N ◦ φ f 2 ◦ νN − (bπp + d)

aπp + c
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and using φ
′
= φ− Tr(φ)/2, the required endomorphism φ is given by

φ =
2(ν

′
N ◦ φ f 2 ◦ νN − (bπp + d)) + (aπp + c)Tr(φ)

aπp + c
.

More natural representation of φ can be computed by computing its kernel.
A basis of the kernel can be computed by supposing gcd(M, deg(aπp +
c)) = 1 and evaluating φ on M torsion subgroup of E.
The endomorphism ring of a supersingular elliptic curve over Fp can
be computed in Õ(p1/4) by the algorithm given in [34]. A solution of
Problems 3.6 and 3.8 will not be useful unless the cofactor f 2 satisfies
f 2 = O(

√
p). For the parameters as in Lemmas 3.3.2 and 3.3.3, we use

Simon’s algorithm to solve Equations 3.6, 3.8. We repeat Simon’s algorithm
or Castel’s algorithm [17] by replacing T = N or N2 by kT with small
integer k unless a solution with f = O(1) is obtained. A target is to find
a solution with f is as small as possible but these algorithms return only
a solution satisfying the equations. We hope, under some heuristic, to get
a better solution in multiple attempts. We leave for further research for
extracting a solution by these algorithms with the last variable f is as small
as possible. We summarize the steps in the following algorithm.

Algorithm 3.3.5. (Computation of an endomorphism)

1. Compute Trφ.
Action of φ on E[N] is known. Since gcd(N, M) = 1 therefore φ

∣∣
E[N]

is a
bijective map. From φφ̂ = [deg φ], the action of φ̂ is also known on E[N].
Therefore, the Trφ is also known on E[N] and can be recovered under the
assumption N > 2

√
Mp > 2

√
M.

2. Suppose φ
′
= φ− Trφ

2 and δ = deg φ
′
= M− 1

4(Trφ)2.

3. Compute Tr(φ
′
πp) as in Step 1 (under the assumption N > 2

√
Mp).

4. Consider an endomorphism of E in the form

ν = (aφ
′
+ b)πp + cφ

′
+ d

such that the degree deg ν is of the form deg ν = T f 2, where T = N or N2,
πp : (x, y)→ (xp, yp) is the pth-power Frobenius endomorphism of E and
f be an integer to be determined. This gives an equation

pδa2 + pb2 + δc2 + d2 + Tr(φ
′
πp)ad− Tr(φ

′
πp)bc− T f 2 = 0. (3.9)
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5. Equation 3.9 for a, b, c, d, f ∈ Z by using Simon’s algorithm 3.2. For
T = N2 (3.8), choose a and d such that gcd(a Tr(φ

′
πp) + 2d, N) = h,

with h is small integer.

6. If necessary replace T by kT with small integer k and use Simon’s algorithm
until k f 2 is as small as possible.

7. If T = kN then express ν in a form ν = ψk f 2 ◦ νN such that deg ψk f 2 = k f 2

and deg νN = N as in Section 3.1.2. If T = kN2 then express ν in the form
ν = ν

′
N ◦ φk f 2 ◦ νN , where ν

′
N , νN are of degree N and φk f 2 is of degree k f 2

isogenies, by using Theorem 3.3.4.

8. The required endomorphism φ is given by

φ =


2(ν
′
N◦φk f 2◦νN−(bπp+d))+(aπp+c)Tr(φ)

aπp+c if T = kN2

2(φk f 2◦νN−(bπp+d))+(aπp+c)Tr(φ)
aπp+c if T = kN

.

3.3.3 Conclusion

In this chapter, we proposed a polynomial-time algorithm 3.3.5 to construct
an endomorphism of a supersingular elliptic curve defined over Fp using
the torsion information of the endomorphism under certain parameter
restriction and heuristic assumptions. This problem was first proposed
in [71] and might be interested in computational number theory. While
dealing with this problem, we studied Simon’s algorithm to solve quadratic
equation of dimension 5 and analyzed its complexity (Theorem 3.2.23). We
believe that this could be useful to solve certain type of norm equation
in an endomorphism ring, and Theorem 3.3.4 could be useful to generate
some useful endomorphisms. However, we haven’t realized any concrete
cryptographic application so far.
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Chapter 4

Genus theory and its application
on isogeny graph

Genus theory gives the structure of 2-torsion subgroup of the class group
of an imaginary quadratic order O with an aid of existing non-trivial char-
acters in the class group of O. Castryck, Sotáková and Vercauteren use
genus theory, in particular, the non-trivial characters to break the decisional
Diffie-Hellman problem lying in the action of the ideal class group of O
on a set of elliptic curves [20]. They observed an excellent application
of the genus theory to get some information on an ideal class from the
corresponding isogeny graph.
In this chapter, we first recall some preliminaries of quadratic forms and
genus theory, then we study the values of the non-trivial characters in the
2-torsion subgroup of the maximal order OK of an imaginary quadratic
field K, and observe how these values give a coloring in the isogeny graph
obtained from the 2-torsion subgroup cl(OK)[2] of cl(OK). We also sum-
marize the idea of Castryck et al. in the class group action, which was a
motivation of our work.

4.1 Introduction

In this section, we present some background for the genus theory and see
how this gives the structure of 2-torsion subgroup of a class group. Here
we mostly follow [28] and restrict our attention to binary quadratic form.

81
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4.1.1 Binary quadratic form

We simply write quadratic form for a quadratic form of two variables.

Definition 4.1.1. A (binary) quadratic form is a quadratic polynomial expression
Q(x, y) = ax2 + bxy + cy2, where a, b ∈ Z. The quadratic form Q is called the
primitive form if gcd(a, b, c) = 1 and the quantity ∆ = b2 − 4ac is called the
discriminant of Q.

An equivalence relation on a set of quadratic forms is defined as follows.

Definition 4.1.2. Two forms Q(x, y) and R(x, y) are equivalent if there are
integers p, q, r, s such that Q(x, y) = R(px + qy, rx + sy) and ps− qr = ±1
and they are called properly equivalent if ps− qr = 1.

We say an integer n is represented properly by a form Q(x, y) if the equa-
tion n = Q(x, y) has an integer solution (x, y) with gcd(x, y) = 1. If the
discriminant ∆ > 0 then Q(x, y) represents both positive and negative
integers in which case Q(x, y) is called indefinite form. If ∆ < 0 then the
form represents only positive integers or only negative integers in which
case Q(x, y) is called positive definite or negative definite respectively.

Lemma 4.1.3. [28, Lemma 2.5] Let ∆ ≡ 0, 1 mod 4 be an integer and n be
an odd integer such that gcd(∆, n) = 1. Then n is properly represented by a
primitive form of discriminant ∆ if and only if ∆ is a quadratic residue modulo n.

The following theorem gives a group structure to the set of properly
equivalent quadratic forms which we call form class group.

Theorem 4.1.4. [28, Theorem 3.9] Let ∆ ≡ 0, 1 mod 4 be a negative integer,
and let cl(∆) be the set of classes of primitive positive definite forms of discriminant
∆. Then cl(∆) is finite abelian group under Dirichlet composition which is called
the form class group.
Furthermore, the identity element of cl(∆) is the class containing the principal
form

x2 − ∆
4

y2 if ∆ ≡ 0(mod 4)

x2 + xy +
1− ∆

4
y2 if ∆ ≡ 1(mod 4)

and the inverse of the class containing the form ax2 + bxy + cy2 is the class
containing ax2 − bxy + cy2.

We are interested in the 2-torsion elements of the form class group.
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Definition 4.1.5. [68] A quadratic form Q(x, y) = ax2 + bxy + cy2 is called an
ambiguous form if a|b.

The following two lemmas give the relations between the ambiguous
form and the quadratic forms of order at most 2.

Lemma 4.1.6. The class of a quadratic form Q = ax2 + bxy + cy2 has order at
most 2 if and only if Q is properly equivalent to Q

′
= ax2 − bxy + cy2.

Proof. Follows from Theorem 4.1.4.

Lemma 4.1.7. [68] A class of a quadratic form is an ambiguous one (class con-
taining an ambiguous form) if and only if it is self-inverse.

The following theorem gives that the form class group corresponds to
the ideal class group of an order of a quadratic imaginary field and hence
the 2-torsion quadratic forms corresponds to the 2-torsion ideal classes.

Theorem 4.1.8. [28] Let K be an imaginary quadratic field of discriminant ∆K
and Q(x, y) = ax2 + bxy + cy2 be a primitive positive definite quadratic form of
discriminant ∆K, then I = [a, (−b +

√
∆K)/2] is an ideal of the maximal order

OK of K and the map sending Q(x, y) to the ideal I induces an isomorphism be-
tween the form class group cl(∆K) and the ideal class group cl(OK). Furthermore,
a positive integer m is represented by a quadratic form if and only if m is the norm
of some ideal a in the corresponding ideal class.

We will see that the 2-torsion ideal classes are generated by the ramified
primes.

Lemma 4.1.9. [28, Corollary 5.17] Let K be a quadratic field of discriminant ∆K,
and p be a prime then p ramifies in K if and only if p divides ∆K.

We are interested in the relation between the primes above the ramified
primes in an imaginary quadratic field K.

Lemma 4.1.10. Let p1, . . . , pr be the odd prime divisors of the discriminant ∆K
of an imaginary quadratic field K = Q(

√
dK), where dK is a square-free negative

integer. Let (pi) = p2
i in the maximal order OK of K for i = 1, . . . , r. Then the

2-torsion elements of the class group cl(OK)[2] are generated by the prime above
the ramified primes in K. Furthermore,

i. If ∆K ≡ 1 mod 4 then
r

∏
i=1

pi = (
√

dK)

and any r− 1 elements of {p1, . . . , pr} generate cl(OK)[2].
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ii. Let ∆K ≡ 0 mod 4, write ∆K = 4dK. If dK ≡ 2 mod 4, write (2) =
(2,
√

dK)
2 then

(2,
√

dK)
r

∏
i=1

pi = (
√

dK).

If dK ≡ 3 mod 4, then the product of primes above the odd prime divisors
is principal ideal i.e.

r

∏
i=1

pi = (
√

dK).

Proof. There is a one to one correspondence between the form class group
of discriminant ∆K and the ideal class group of the maximal order OK of
K by Theorem 4.1.8. This theorem implies that the 2-torsion form classes
correspond to the 2-torsion ideal classes. We now show that these 2-torsion
ideal classes are generated by the ramified primes. From Lemmas 4.1.6,
4.1.7, the class of a quadratic form Q has order ≤ 2 if and only if Q is
properly equivalent to an ambiguous form, say Q

′
= cx2 + dxy + ey2

with c|d. By Theorem 4.1.8, the form Q
′

corresponds to an ideal J =
[c, (−d +

√
∆K)/2] of ∆K with c|d. Using c|d, we have

√
∆K ∈ J and hence

the norm of J divides the discriminant ∆K of the field. Also from Lemma
4.1.9, a prime is ramified in K if and only if it divides the discriminant of
K, which implies all the primes occurring in the norm of J are ramified.
As a consequence, the 2-torsion forms in the form class group correspond
to 2-torsion ideals in the ideal class group, and they are generated by the
prime ideals above the ramified primes.
Moreover, for each of the odd prime divisor pi of ∆K we can write (pi) =
p2

i = (pi,
√

dK)
2 and if 2 divides ∆K then

• (2) = (2,
√

dK)
2 if dK is even. This is because

(2,
√

dK)
2 = (4, 2

√
dK, dK) ⊂ (2).

• (2) = (2, 1 +
√

dK)
2 if dK is odd. This is because

(2, 1 +
√

dK)
2 = (4, 2(1 +

√
dK), 2

√
dK + dK + 1) ⊂ (2) when dK is

even.

i. Suppose dK ≡ 1( mod 4) then ∆K = dK = p1 · · · pr. This gives

r

∏
i=1

pi = (p1,
√

dK) · · · (pr,
√

dK) = (
√

dK),

which implies
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pi ∼
r

∏
j=1,j 6=i

pj for i = 1, . . . r

and hence {p1, . . . pr} \ {pi} generates cl(OK)[2] for any i.

ii. Suppose ∆K ≡ 0 mod 4, write ∆K = 4dK. If dK ≡ 3 mod 4 then

r

∏
i=1

pi = (p1,
√

dK) · · · (pr,
√

dK) = (
√

dK),

since
dK = p1 · · · pr and ∆K = 4dK

for odd prime divisors p1, . . . , pr.
For dK ≡ 2 mod 4, we can take (2) = (2,

√
dK)

2 then we have,

(2,
√

dK)
r

∏
i=1

pi = (2,
√

dK) · (p1,
√

dK) · · · (pr,
√

dK) = (
√

dK),

since
dK = 2p1 · · · pr and ∆K = 4dK.

4.1.2 Genus theory

Characters play an important role in determining the structure of the 2-
torsion class group. The following lemma ensures the existence and the
uniqueness of the characters in (Z/∆Z)∗.

Lemma 4.1.11. [28, Lemma 1.14] Let ∆ ≡ 0, 1 mod 4 be a nonzero integer.
There exists a unique homomorphism χ : (Z/∆Z)∗ → {±1} given by Legendre
symbol as χ([p]) =

(
∆
p

)
for odd primes not dividing ∆ and χ([−1]) = ±1

according to ∆ > 0 and ∆ < 0.

The following theorem tells when a value in (Z/∆Z)∗ is represented
by a quadratic from of discriminant ∆.

Theorem 4.1.12. [28] Let ∆ ≡ 0, 1 mod 4 be a negative integer and χ be the
character as in Lemma 4.1.11. Then for an odd prime not dividing ∆, [p] ∈ ker(χ)
if and only if p is represented by one of the quadratic forms in cl(∆). Furthermore,
the values in (Z/∆Z)∗ represented by the principal form of discriminant ∆ form
a subgroup H of ker(χ).
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Two forms of discriminant ∆ are defined to be in the same genus if they
represent the same values in (Z/∆Z)∗. Since equivalent forms represent
same values, they belong to the same genus. The genus for a coset H

′
of H in

ker(χ) is defined to be a set consisting of all forms of discriminant ∆ that
represents the values of H

′
modulo ∆.

Lemma 4.1.13. [28, Lemma 3.13] The map Φ : cl(∆)→ ker(χ)/H sending the
class of a quadratic form to the values it represents in (Z/∆Z)∗ i.e. the coset of
H in ker(χ), is a group homomorphism.

By Theorem 4.1.8, we can view the map Φ as a map from the ideal class
group cl(∆) to (Z/∆Z)∗ sending an ideal class to its norm.
The following proposition gives the cardinality of the 2-torsion subgroup
of the class group cl(∆).

Proposition 4.1.14. [28, Proposition 3.11] Let ∆ ≡ 0, 1 mod 4 be a negative
integer, and r be the number of odd primes dividing ∆. Define the number of
assigned characters µ as follows: if ∆ ≡ 1 mod 4, then µ = r and if ∆ ≡ 0
mod 4, then ∆ = −4n, where n > 0, and µ id determined by the following table

n µ assigned characters
n ≡ 3 mod 4 r χ1, . . . , χr
n ≡ 1 mod 4 r + 1 χ1, . . . , χr, δ
n ≡ 2 mod 8 r + 1 χ1, . . . , χr, δε
n ≡ 6 mod 8 r + 1 χ1, . . . , χr, ε
n ≡ 4 mod 8 r + 1 χ1, . . . , χr, δ
n ≡ 0 mod 8 r + 2 χ1, . . . , χr, δ, ε

where

χi(a) =

(
a
pi

)
defined for a prime to pi, i = 1, . . . , r

δ(a) = (−1)(a−1)/2 defined for a odd

ε(a) = (−1)(a2−1)/8 defined for a odd.

Then the class group cl(∆) has exactly 2µ−1 elements of order ≤ 2.

The principal genus, the genus consisting the principal form, corresponds
to the classes of squares in the class group by the following theorem.

Theorem 4.1.15. [28] Let ∆ ≡ 0, 1 mod 4 be a negative integer. Then there are
2µ−1 genera of forms of discriminant ∆ and the principal genus corresponds to the
classes in cl(∆)2.
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All the µ characters defined in Proposition 4.1.14 constitute a map

Ψ : (Z/∆Z)∗ → {±1}µ

defined by all the µ characters in its coordinates i.e.

[a] 7→ (χ1(a), . . . , χµ(a)),

where χi = ε, δ, or δε for r < i ≤ µ according to Proposition 4.1.14. An
important observation is that Ψ is a homomorphism.

Lemma 4.1.16. [28, Lemma 3.17] The homomorphism Ψ : (Z/∆Z)∗ → {±1}µ

is surjective and its kernel is the subgroup H of values represented by the principal
form and hence Ψ induces an isomorphism

(Z/∆Z)∗/H ∼−→ {±1}µ.

This lemma guarantees that the map Ψ is uniquely determined by the
values in (Z/∆Z)∗ up to the values that are represented by the principal
form of discriminant ∆.

4.2 Graph coloring in some Cayley graphs

4.2.1 Graph coloring

Definition 4.2.1 (Graph Coloring). A procedure of labeling each vertex of a
graph G by colors in such a way that no two adjacent vertices admit the same
colors is called graph coloring. The minimum number of colors required to color a
graph G is called the chromatic number of the graph.

We are interested in colorings of a special Cayley graph.

Definition 4.2.2. (Cayley graph) [60] Let G be a group and X be a generating
set of G such that X does not contain the identity element of G and X = X−1 =
{x−1 : x ∈ X}. Then the Cayley graph Γ = (G, E) is an undirected graph in
which the vertices are the elements of G and edges set E consists the edges joining
g and gx for any g ∈ G and x ∈ X, i.e. E = {(g, gx) : g ∈ G, x ∈ X}.

We will see some examples of Cayley graph.

Definition 4.2.3. (Hypercube graph)[54] The n-cube or n-dimensional hypercube
Qn is defined recursively by the cartesian product of two graphs as

Q1 = K2

Qn = K2 ×Qn−1,

where K2 is a complete graph with two vertices and one edge. See Figure 4.1 for
Q1 and Q2 and Figure 4.2 for Q3.
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Figure 4.1: Q1 and Q2

Example 4.2.4. The n-dimensional hypercube Qn can be constructed by the 2n

nodes of the n-dimensional boolean vectors (vectors with binary coordinates 0 or
1) or equivalently by the binary strings of length n, and two nodes are adjacent
whenever they differ in exactly one coordinate. In short, the n-cube is the Cayley
graph with the group G = (Z/2Z)n and a generating set

X = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}.

We extend the definition for Q0 as a graph having a single vertex and
no edge. An n-cube is composed of many hypercubes.

Lemma 4.2.5. An n-cube is composed of a number Hm,n = 2n−m(n
m) of m-

dimensional hypercubes .

Example 4.2.6. A 4-cube contains 8 cubes (3-cubes), 24 squares (2-cubes), 32
lines (1-cubes) and 16 vertices (0-cubes).

We call the hypercube with longest diagonals, i.e. the graph obtained from
a hypercube by adding edges joining the farthermost opposite vertices (with
respect to Hamming distance) of the hypercube by Qd

n. For example, if
we identify the vertices with binary string x1x2 . . . xn, then the farthermost
opposite vertex can be obtained by the mapping, say an opposite map, from
a set of n length binary strings to itself:

x1x2 . . . xn 7→ x̄1x̄2 . . . x̄n,

where

x̄i =

{
1 if xi = 0
0 if xi = 1.

See Figure 4.6 for Qd
3.

From Lemma 4.2.5, the number of (n− 1)-hypercubes in an n-hypercube is
2n. Now looking only at the two distinct (no vertices in common) (n− 1)-
cubes and joining their farthermost opposite vertices in their respective
(n− 1)-cubes, we get a graph that we denote as Qd,n−1

n . In other words,

Qd,n−1
n = K2 ×Qd

n−1.
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Figure 4.2: Coloring of 3-cube (Q3)

See Qd,3
4 in Figure 4.10.

The chromatic number of hypercube graph is 2 [54]. An idea of a proof
is to define the weight, which is the integer ∑i xi, to each vertex where
the vertex is represented by a binary string x1x2 . . . xn as in Example 4.2.4.
Then color the vertices of even weight by the first color and the vertices
of odd weight with the second color, see Figure 4.2 for a valid coloring in Q3.

4.2.2 Coloring a Cayley graph

Let K be a quadratic imaginary field of discriminant ∆K ≡ 0, 1 mod 4
and cl(OK)[2] be the 2-torsion subgroup of the class group cl(OK) of its
maximal order OK.
By the isomorphism between the class group of an order in K and the form
class group of discriminant ∆K, we move from one to another class group
according to context.
Suppose p1, . . . pr be distinct odd prime divisors of ∆K and µ is the number
of assigned characters, which is r or r + 1 as in Proposition 4.1.14.
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We define the genus coloring map.

Definition 4.2.7. (Genus coloring map) A map T : cl(∆K) → {±1}µ defined
by the composition T = Ψ

′ ◦Φ, where Φ : cl(∆K)→ ker(χ)/H sends the class
of a quadratic form of discriminant ∆K to the coset it represents and Ψ

′
is an

isomorphism deduced from Ψ from Lemma 4.1.16. The map T, which gives µ tuple
of values in {±1}µ, is defined as a genus coloring map.

The kernel of T is the kernel of Φ, which is the set of squares in cl(∆K)
by Theorem 4.1.15. If we are considering the map T from the correspond-
ing ideal class group then it maps an ideal class to a tuple of Legen-
dre/Kronecker symbols attached to its norm. We will apply the genus
coloring map to a Cayley graph.

Now we define the Cayley graph in our context. We construct Cay-
ley graph with the group G = cl(OK)[2] and the generating set X =
{p1, . . . , pn} of G, where pi are the primes above the ramified primes pi in
K for i = 1, . . . , n. We color the vertices of the Cayley graph by the map
T, then T assigns values to each of the ideal classes in G which we say
coloring of the vertices.
We name the Cayley graph constructed by taking the group G = 〈p1, . . . , pn〉
and the generating set X = {p1, . . . , pn} as a {p1, . . . , pn} graph. We are
interested in the following question:

Problem 4.2.8. Determine whether the coloring of the {p1, . . . , pn} graph ob-
tained by the genus coloring map T is valid or not. If coloring is not valid in
general, then identify the cases when the coloring is valid.

We will study Problem 4.2.8 for the {p1, . . . , pn} graph associated with
the 2-torsion subgroup of the class group of the maximal order OK of an
imaginary quadratic field K.
Coloring of the {p1, . . . , pn} graph depends on the relation between the
ramified primes in K because this determines when two ideals belong to
the same genus. Two ideal classes have the same value (color) by the genus
coloring map T if and only if they belong to the same genus.

Lemma 4.2.9. Let cl(OK)[2] be the 2-torsion subgroup of the class group of
the maximal order OK of an imaginary quadratic field K. Then for any p, q ∈
cl(OK)[2] belong to the same genus if and only if pq ∈ cl(OK)

2.

Proof. Let p, q ∈ cl(OK)[2] such that p, q belong to the same coset H
′ ∈
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cl(OK)/cl(OK)
2. Let T be the genus coloring map. Then,

p, q ∈ H
′

⇐⇒ T(p) = T(q)
⇐⇒ T(pq) = e, where e is the identity of {±1}µ

⇐⇒ pq ∈ cl(OK)
2, the kernel of T.

We study {p1, . . . , pn} and {p1, . . . , pn−1} graphs by taking ramified
primes pi. The former is interesting because those are all the ramified
primes, and the latter is interesting because those n− 1 primes are suffi-
cient to generate the 2-torsion class group. We start with some examples
of colorings in small graphs where, coloring is valid without further re-
strictions except the assumption that each of the prime ideal belongs to a
different genus than the principal one.

Example 4.2.10. Let ∆K ≡ 1 mod 4 be the discriminant of the imaginary
quadratic field K. Let p1, p2 be the odd prime divisors of the discriminant ∆K of
K. Let (pi) = p2

i in the maximal order OK of K for i = 1, 2. Then the colorings
given by T in {p1}, {p2} and {p1, p2} graphs are valid colorings if and only if
pi 6∈ cl(∆K)

2 for i = 1, 2.

Proof. By Lemma 4.1.10 p1 ∼ p2, therefore we can write cl(OK)[2] = 〈p1〉.
Suppose p1 6∈ cl(OK)

2. Then p1 and the principal ideal class [(1)] lie in dif-
ferent genera. By genus theory, there are 2µ−1 = 2 colors (1, 1) and (−1,−1)
for the 2 genera, which are cosets of cl(OK)

2 in cl(OK). Therefore, we have

T(p1) = T(p2) = (−1,−1) and T([(1)]) = (1, 1),

(1,1) (-1,-1)

Figure 4.3: {p1} = {p2} = {p1, p2} graph

which shows that the coloring in the {p1} = {p2} = {p1, p2} graph is
valid, see Figure 4.3.

Example 4.2.11. Let ∆K ≡ 1 mod 4 be the discriminant of the imaginary
quadratic field K. Let p1, p2, p3 are odd prime divisors of ∆K. Let (pi) = p2

i for
i = 1, . . . , 3. The colorings given by the genus coloring map T have following
possible cases:
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T([(1)]) = (1,1,1) T(p2) = (-1,-1,1)

T(p2) = (-1,1,-1) T(p3) = (1,-1,-1)

Figure 4.4: {p1, p2} graph for µ = 3

• If any one of the pi is square then the coloring is not valid in {p1, p2, p3},
{p1, p2}, {p1, p3} and {p2, p3} graph.

• If none of the pi are squares, then the colorings in {p1, p2, p3}, {p1, p2}, {p1, p3}
and {p2, p3} graphs are valid colorings.

Proof. There are #cl(OK)[2] = 4 genera and hence 4 possible colorings

(1, 1, 1), (1,−1,−1), (−1,−1, 1), (−1, 1,−1).

Suppose cl(OK)[2] = 〈p1, p2〉. Other generating sets give similar coloring
situation.

• If one of p1 or p2 ∈ cl(OK)
2, the coloring map does not give a valid

coloring in {p1, p2} graph.

• Suppose p1, p2, p3 6∈ cl(OK)
2. Then

p1p2 = p3 6∈ cl(OK)
2

and therefore p1 and p2 lie in different genera and hence have different
color. For example

T([(1)]) =(1, 1, 1), T(p1) = (−1,−1, 1), T(p2) = (−1, 1,−1) and
T(p1p2) =(1,−1,−1).

In this case, the colorings in {p1, p2} and in {p1, p2, p3} graphs are
valid, see Figure 4.4 and Figure 4.5.
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T([(1)]) = (1,1,1) T(p1) = (-1,-1,1)

T(p2) = (-1,1,-1) T(p2) = (1,-1,-1)

Figure 4.5: {p1, p2, p3} graph for µ = 3

Example 4.2.12. Suppose K = Q(
√
−3 · 13 · 17) = Q(a). Then the class group

is of order 16 with structure C8 × C2 = 〈x〉 × 〈y〉, where x and y are generators
of C8 and C2 respectively in the structure of the class group. Let

(3) = p2
1, (13) = p2

2, and (17) = p2
3,

where

p1 = (3, 1/2a + 3/2), p2 = (13, 1/2a + 13/2), p3 = (17, 1/2a + 17/2).

Here y ∼ p3 and p2 ∈ cl(OK)
2, the principal genus, since x4 ∼ p2. Also

p1p3 = p2 ∈ cl(OK)
2, therefore p1 and p3 belong to the same genus. We have,

T(p1) = (−1, 1,−1), T(p2) = (1, 1, 1), T(p3) = (−1, 1,−1).
Hence, coloring in the {p1, p3} graph is valid but not in {p1, p2}, {p2, p3}

{p1, p2, p3} graphs.

Example 4.2.13. Suppose K = Q(
√
−3 · 5 · 17) = Q(a). Then the class group

is of order 12 with structure C6 × C2 = 〈x〉 × 〈y〉, where x and y are generators
of C6 and C2 respectively in the structure of the class group. Let

(3) = p2
1, (5) = p2

2, and (17) = p2
3.

p1 = (3, 1/2a + 3/2), p2 = (5, 1/2a + 5/2), p3 = (17, 1/2a + 17/2).

x3 ∼ p3 and y ∼ p2. Here p1, p2, p3 6∈ cl(O)2 and

T(p1) = (1,−1,−1), T(p2) = (−1, 1,−1), T(p3) = (−1,−1, 1).

Therefore, colorings in the {p1, p2}, {p1, p3}, {p2, p3} and {p1, p2, p3} graphs
are valid.
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Figure 4.6: 3 cube with longest diagonals

Now, we observe the general case. In many cases, the {p1, . . . , pn} graph
is a hypercube graph which can be colored with 2 colors and, in some cases,
the graph resembles the hypercube but having more edges, which might
require more than two colors to color the graph. As observed before, the
chromatic number of any hypercube is 2, but if we add more edges in this
cube, then the resulting graph may or may not be 2-colorable.

Lemma 4.2.14. The chromatic number of the graph Qd
n is 2 when n is odd and is

greater than 2 and at most 4 when n is even.

Proof. Let n is odd then the opposite map sends vertices of even weight to
vertices of odd weight and vice versa. Therefore, coloring the vertices of
even weight to one color and those of odd weight by another color gives a
valid coloring with chromatic number two. For example see Figure 4.6 for
n = 3.
Let n is even. Then Qd

n has cycles of odd length and hence is not 2 colorable
by using the argument that a graph is 2 colorable if and only if it does not
have a cycle of odd length [54].
Furthermore, when n is even, the opposite map does not change the parity
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of the weight of the vertices. Giving two colors for even and odd weighted
vertices in the n-hypercube as above and while adding the longest diag-
onals, we assign two more colors; one for one of the opposite vertices of
even weight and one for that of odd weight vertices, we see that the graph
can be colored with 4 colors.

Chromatic number of Qd
n is known when n is even.

Proposition 4.2.15. The chromatic number of Qd
n is 4 when n is even.

Proof. See the discussion in [86, pp. 308-309].

Lemma 4.2.16. Let ∆K ≡ 1 mod 4 be the discriminant of the imaginary
quadratic field K. Let p1, . . . , pr be the odd prime divisors of the discriminant
∆K of K and OK be the maximal order of K. Let (pi) = p2

i in OK. Using the
coloring map T, the coloring in {p1, . . . , p̃i, . . . , pr}, a set without pi, graph for
any 1 ≤ i ≤ r is valid if and only if none of the pj, with j 6= i belongs to the
principal genus.

Proof. By definition of the {p1, . . . , p̃i, . . . , pr} graph, there is an edge be-
tween any two elements A, B ∈ cl(OK)[2] if and only if B = pA for some
p ∈ X = {p1, . . . , pr−1}. Adjacent vertices A and B have different colors
if and only of ApA 6∈ cl(O)2 by Lemma 4.2.9 which is true if and only if
p 6∈ cl(O)2.

Theorem 4.2.17. Let ∆K ≡ 1 mod 4 be the discriminant of the imaginary
quadratic field K. Let p1, . . . , pr be the odd prime divisors of the discriminant ∆K
of K and OK be the maximal order of K. Let (pi) = p2

i in OK. Then, there are the
following possible cases if the coloring is done by the coloring map T.

i. From pi’s, consider any set with r− 1 elements, without loss of generality,
let this set be {p1, . . . , pr−1}. Then the {p1, . . . , pr−1} graph is (r − 1)
hypercube graph Qr−1. If pi 6∈ cl(OK)

2 for i = 1, . . . , r − 1 then the
coloring is valid and only attains the chromatic number of the (r − 1)-
hypercube if all the pi belong to the same genus. For r = 4, see in https:

// github. com/ mgyawali/ Graph_ coloring .

ii. The {p1, . . . , pr} graph is (r− 1)-hypercube with longest diagonals Qd
r−1.

Suppose pi 6∈ cl(OK)
2 for i = 1, . . . , r and r ≥ 2. Then the coloring is valid,

the chromatic number is 2 when r is even and all of these r prime ideals
belong to a non-principal genus; and the chromatic number is 4 when r is
odd and these r prime ideals belong to two different non-principal genera.

https://github.com/mgyawali/Graph_coloring
https://github.com/mgyawali/Graph_coloring
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Proof. i. Suppose pi 6∈ cl(OK)
2 for i = 1, . . . , r− 1. Then the {p1, . . . , pr−1}

graph admits a valid coloring by Lemma 4.2.16. Now we prove
how the coloring map provides the chromatic number of the (r− 1)-
hypercube.
Recalling a representation of the vertices of an n-hypercube by the
binary strings of length n from Example 4.2.4, we can see the lattice
view of the graph, see Example 4.7 for r = 5, divided in labels, where
we say a string A = x1x2 . . . xn lie in level m for 0 ≤ m ≤ n if A has m
number of 1’s. Now we can see the lattice view of the {p1, . . . , pr−1}
graph, which is a r− 1 cube and there are product of k prime ideals
in level k.
Suppose all the pi belong to the same genus. The coloring to each
of the vertices are determined when the coloring of the prime ideals
p1, . . . pr−1, which are T(p1), . . . T(pr−1), are assigned because T is ho-
momorphism.
We have the color (1, . . . , 1) having all the coordinate 1 to the vertex
at level 0, which is denoted as a binary string of length n as 00 . . . 0
corresponding to the principal ideal class [(1)]. Since all the prime
ideals p1, . . . pr−1 belong to the same genus, the complete character T
maps each of these primes to the same values in {±1}r−1 and thus
all have same color i.e.

T(p1) = T(p2) = . . . = T(pµ−1)

in the level 1. In the second level, the vertices are formed with the
product of two prime ideals, therefore

T(pipj) = (1, . . . , 1) for all i 6= j,

which is different than the color in level 1. In level 3, we have the
product of three prime ideals, therefore the color at this level must be
equal to the color at level 1,

T(pipjpk) = p1 for any choice of three prime ideals.

In general, in level i ≥ 1 and for any i choices of prime ideals p1, . . . pi,
we have

T(p1 · · · pi) = (1, . . . , 1) if i is even
T(p1 · · · pi) = T(p1) if i is odd.

Hence, the graph is 2-colorable, see in 4.9 for r = 4 and in 4.7 for
r = 5.
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ii. The {p1, . . . , pr} graph is also a r − 1 hypercube graph with 2r−1

vertices as above but there are 2r−2(r− 1) + 2r−2 = 2r−2r edges, so
there are 2r−2 more edges than {p1, . . . , pr−1} graph and these extra
edges are the longest diagonals by using the fact pr = p1 · · · pr−1 from
Lemma 4.1.10.
When r is odd, then all the pi can not belong to the same genus because
the relation pr = p1 · · · pr−1 implies that if r− 1 prime ideals belong
to the same genus then the rth of them must belong to the principal
genus which is a contradiction. Hence, at least two of the prime ideals
must belong to different genera and attains at least four colors that
are similar to the proof of the part (i).
Suppose r is even, and all of the r prime ideals belong to a non-
principal genus. Then, the graph is 2-colorable that can be proved
similarly as in part (i), see Figure 4.8 for r = 4.

From Theorem 4.2.17, the {p1, . . . , pr} graph is either (r− 1)-hypercube
or (r− 1)-hypercube with longest diagonals when ∆K ≡ 1 mod 4.
Now consider the case where ∆K ≡ 0 mod 4. In this case, 2 is also ramified.
We have #cl(OK)[2] = 2µ−1, where µ is the number of distinct prime divi-
sors and cl(OK)[2] = 〈c, p1, . . . , pr〉, where c is prime above 2. In this case,
the graph is still hypercube but with some more edges as in the previous
cases.

Lemma 4.2.18. The graph Qd,n−1
n has chromatic number 2 when n > 3 is even.

Proof. Similar arguments as in Lemma 4.2.14. See also Figures 4.10 and 4.11
for particular cases when n = 4, where the extra edges than a 4 hypercube
are the edges connecting to opposite vertices to one lower dimensional
hypercube i.e. 3 hypercubes. In this example, the graph is Qd,3

4 .

When n > 2 is even, then in Lemma 4.2.14, we conjectured that the
chromatic number of Qd

n has chromatic number 4. When n is odd, then
n− 1 is even and from the relation Qd,n−1

n = K2 × Qd
n−1, we expect that

the chromatic number of Qd,n−1
n is also 4 because K2 does not change the

chromatic number.

Theorem 4.2.19. Let ∆K ≡ 0 mod 4 be the discriminant of imaginary quadratic
field K = Q(

√
dK). Let p1, . . . , pr be the odd prime divisors of the discriminant

∆K of the maximal order OK. Let (pi) = p2
i , (2) = c2 in OK. Write ∆K = 4dK.

i. When dK ≡ 3 mod 4,
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(1,1,1,1,1)

(-1,-1,1,1,1)

(-1,-1,1,1,1)

(-1,-1,1,1,1) (-1,-1,1,1,1)

(1,1,1,1,1) (1,1,1,1,1)
(1,1,1,1,1)

(1,1,1,1,1) (1,1,1,1,1)

(1,1,1,1,1)

(-1,-1,1,1,1)

(-1,-1,1,1,1)

(-1,-1,1,1,1) (-1,-1,1,1,1)

(1,1,1,1,1)

p1 p2 p3 p4

Figure 4.7: A {p1, . . . , p4} graph for µ = 5

• Let c, pi 6∈ cl(OK)
2 for i = 1, . . . , r− 1. The {2, p1 . . . , pr−1} graph

is Qr and coloring is valid for any choice of r− 1 odd prime divisors
and the chromatic number 2 is attained when all the prime ideals belong
to the same non-principal genus.

• Let c, pi 6∈ cl(OK)
2 for i = 1, . . . , r. Then the {2, p1 . . . , pr} graph is

Qd,r−1
r and the coloring is valid. Moreover, when r and all the prime

ideals belong to the same genus, then the chromatic number is 2 (see
Fig 4.11). When r is odd, and if one of the prime ideals in p1, . . . , pr
belongs to a genus which is different from the genus of the remaining
ideals, then the graph attains 4 colors.

ii. When dK ≡ 2 mod 8, coloring in {2, p1, . . . , pr} graph and any r subset
graph have similar cases as in Theorem 4.2.17 for µ = r + 1.

iii. When dK ≡ 6 mod 8, coloring behavior is similar in {2, p1, . . . , pr} graph
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(1,1,1,1)

(-1,-1,1,1)
(1,1,1,1)

(-1,-1,1,1)

(-1,-1,1,1) (1,1,1,1)

(1,1,1,1)
(-1,-1,1,1)

p2

p1

p3

p4

Figure 4.8: A {p1, p2, p3, p4} graph for µ = 4
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(1,1,1,1)

(-1,-1,1,1)
(-1,1,-1,1)

(-1,-1,1,1)

(-1,-1,1,1) (1,-1,1,-1)

(-1,-1,-1,-1)
(-1,-1,1,1)

p2

p1

p2

Figure 4.9: A {p1, p2, p3} graph for µ = 4
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Figure 4.10: 4-cube with edges connecting to opposite vertices in two
distinct 3-cube: (Qd,3

4 ).

as in the case of Theorem 4.2.17 for µ = r + 1.

Proof. i. Suppose dK ≡ 3 mod 4. Then there are r + 1 characters and
#cl(OK)[2] = 2r by Proposition 4.1.14. Also by Lemma 4.1.10, we
have

r

∏
i=1

pi = (
√

dK).

These facts imply that the rest of the arguments are similar to Theorem
4.2.17.

ii. When dK ≡ 2 mod 8, coloring in {2, p1, . . . , pr} graph and any r
subset graph have similar cases as in Theorem 4.2.17 since µ = r + 1
and (2,

√
dK)p1 · · · pr = (

√
dK) and #cl(OK[2]) = 2r.
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iii. When dK ≡ 6 mod 8, coloring is valid in {2, p1, . . . , pr} graph as
in the case of Theorem 4.2.17 by using the fact that µ = r + 1 and
(2,
√

dK)p1 · · · pr = (
√

dK) and #cl(OK[2]) = 2r.

(1,1,1,1,1)

(-1,-1,1,1,1)

(-1,-1,1,1,1)

(-1,-1,1,1,1) (-1,-1,1,1,1)

(1,1,1,1,1) (1,1,1,1,1)
(1,1,1,1,1)

(1,1,1,1,1) (1,1,1,1,1)
(1,1,1,1,1)

(-1,-1,1,1,1)

(-1,-1,1,1,1)

(-1,-1,1,1,1) (-1,-1,1,1,1)

(1,1,1,1,1)

c p1 p2 p3

Figure 4.11: {2, p1, p2, p3, p4} graph for r = 4 when ∆ ≡ 0 mod 4

4.3 Isogeny Graph

In this section, we study isogeny graph from ramified primes.
We revisit the isogeny graph.

Definition 4.3.1. (Isogeny graph). An isogeny graph is a graph with a vertex set
consisting of isomorphic classes of elliptic curves, and the edges set consisting of
isogenies between the elliptic curves.
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We are interested in the isogeny graph with isogenies of degree equal to
the norm of ramified primes. Let E be an elliptic curve over the finite field
Fq whose endomorphism ring is the maximal order OK of the imaginary
quadratic field K = Q(

√
dK). Let pi be divisors of dK for i = 1, . . . , n and

pi be the prime above pi. With the class group action from Theorem 1.3.17,
the {p1, . . . pn} isogeny graph can be defined as a graph with vertices set
Ellq(O) and the edges are given by the set

{(E0, E = pi ? E0)| for E0, E ∈ Ellq(O) and for pi ∈ {p1, . . . , pn}}.

Lemma 4.3.2. Let ∆K ≡ 1 mod 4 be the discriminant of the imaginary quadratic
field K. Let p1, . . . , pr be the odd prime divisors of the discriminant ∆K of K and
OK be the maximal order of K and h be the class number. Then the {p1, . . . , pr−1}
and {p1, . . . , pr} isogeny graph are partitioned into h

2r−1 connected components
and each connected component is Qr−1 in the former case and that of Qd

r−1 in the
latter case.

Proof. Follows from Theorem 1.4.6.

Lemma 4.3.3. Let ∆K ≡ 0 mod 4 be the discriminant of imaginary quadratic
field K = Q(

√
dK). Let p1, . . . , pr be the odd prime divisors of the discriminant

∆K of the maximal order OK and h be the class number. Let (pi) = p2
i , (2) = c2

in OK. Write ∆K = 4dK.

i. When dK ≡ 3 mod 4, then the {2, p1, . . . , pr−1} and {2, p1, . . . , pr}
isogeny graphs are partitioned into h

2r connected components and each con-
nected component is Qr in the former graph and that of Qd,r−1

r in the latter
graph.

ii. When dK ≡ 2 mod 8 the {2, p1, . . . , pr} isogeny graph is similar as in
Lemma 4.3.2.

iii. When dK ≡ 6 mod 8, the {2, p1, . . . , pr} isogeny graph is as in Lemma
4.3.2.

Coloring of the {p1, . . . , pn} isogeny graph by the genus coloring map
T can be obtained if we fix an elliptic curve E0; color it as an identity action
and the rest of the curves admit colors according to the class group action,
for instance if E = ∏k

i=1 piE0 for some 1 ≤ k ≤ n then coloring of E is given
by the value T(∏k

i=1 pi).
Since the components of the isogeny graph from the ramified primes are
Qn, Qd

n and Qd,n−1
n , they have similar coloring properties as described in

Theorems 4.2.17 and 4.2.19.
As a consequence of Theorem 4.2.17, we have the following
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Corollary 4.3.4. Let ∆K ≡ 1 mod 4 be the discriminant of the imaginary
quadratic field K. Let p1, . . . , pr be the odd prime divisors of the discriminant ∆K
of K and OK be the maximal order of K. Let (pi) = p2

i in OK. If none of the two
ideals pi belongs to a genus then the coloring in a component of the {p1, . . . , pr}
isogeny graph represents all the possible colors for all the genera of cl(OK).

4.4 Decisional Diffie-Hellman for class group ac-
tions

Let O be an imaginary quadratic order and the class group cl(O) is acting
on the set

EO(Fp) = {j(E) : E is defined over Fp and End(E) = O}.

Decisional Diffie-Hellman problem for class group is: distinguish the two
probability distributions

• (a ? E, b ? E, (ab) ? E) and

• (a ? E, b ? E, c ? E),

where a, b, c are random elements in cl(O). Castryck, Sotáková and Ver-
cauteren’s idea is to distinguish the two distributions through the non-
trivial characters [20].

Fix an elliptic curve E with j(E) ∈ EO(Fp) as a base curve. Then by
the transitive action of cl(O) to the set EO(Fp), each ideal class a can
be associated to an elliptic curve E

′
and the isogeny φ : E → E

′
such

that E
′
= a ? E and norm N(a) = deg(φ). The idea developed in [20]

is to calculate the coloring T(E
′
) associated with the vertex E

′ ∈ EO(Fp)

of the isogeny graph from only the curves E, E
′

or without knowing the
connecting ideal a. Since the map T as in Subsection 4.2.2 is composed of
characters associated to each divisor pi of the discriminant ∆O, they devise
a technique to determine the norm N(a)(mod pi) up to a square factor for
each pi.
The curves E and E

′
have the same endomorphism ring O and hence lie on

the same level of their corresponding volcanoes by [58], by walking down
from E and E

′
to their respective surfaces give elliptic curves E0 and E

′
0

having the same endomorphism ring O0 ⊂ O. Moreover, since the class
group cl(O0) acts transitively on EO(Fp), there exists an ideal b ⊂ O0 such
that E

′
0 = b ? E0, a representative can be chosen with gcd(N(b), ∆O0) = 1.
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Let φ
′

: E0 → E
′
0 be the isogeny corresponding to the ideal b of degree equal

to the norm N(b). At the floor, we have

E0(Fp)[m∞] ∼= Z/pv
i Z ∼= E

′
0(Fp)[m∞].

Choose P ∈ E0[pi](Fp), P
′ ∈ E0[pi](Fp) and Q, Q

′
of order pv

i such that

pv−1
i Q = P and pv−1

i Q
′
= P

′
.

Then, there exists k ∈ {1, . . . , pi − 1} such that kφ
′
(P) = P

′
. Then

kφ
′
(P) = pv−1

i (kφ
′
(Q)) = P

′
= pv−1

i Q
′

gives kφ
′
(Q) = Q

′
and by Tate pairing

Tpi(P
′
, Q

′
) = Tpi(kφ

′
(P), kφ

′
(Q)) = Tpi(P, Q)k2 deg(φ

′
),

which gives N(a)(mod pi) up to a square factor and hence the character
associated to pi is computed as

(
N(b)

pi

)
=

(
deg(φ

′
)

pi

)
=

 logTpi (P,Q) Tpi(P
′
, Q

′
)

pi

 .
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Chapter 5

A new candidate: Quadratic
Surface Intersection (QSI) key
exchange

Currently, there are five major post-quantum areas of research in cryptogra-
phy, four of them are discussed in [11] including lattice-based, codes based,
multivariate, hash-based, and one is isogeny based cryptography.
In this section, we present a new candidate for a key exchange protocol
that we call QSI key exchange, joint work with Daniele Di Tullio [90], and
an encryption scheme derived from it. Mainly, the key exchange is based
on the difficulty of recovering a Veronese variety, which is hidden by an
automorphism of the ambient space. This problem reduces to a problem
of solving a large system of high degree polynomial equations in many
variables or finding the primary decomposition of an ideal generated by
some multivariate polynomials, which we claim a post-quantum problem.
We leave the detailed security analysis and an optimization of the proposed
scheme towards an efficient key exchange candidate for future research.
We have implemented our algorithm in the computer algebra system Sage-
Math [35] and is available at
https://github.com/mgyawali/QSI-Key-Exchange

5.1 QSI Key Exchange

5.1.1 A high-level overview of the key exchange

QSI key exchange is not an exact analog of Diffie-Hellman like key ex-
change, where Alice and Bob have a similar way of constructing public

107

https://github.com/mgyawali/QSI-Key-Exchange


108 CHAPTER 5. A NEW CANDIDATE: QSI KEY EXCHANGE

and private keys, but in QSI one of the users say Bob makes use of Alice’s
public keys to generate his private key. Later they become successful to
share a common secret by using their private data.
In summary, Alice chooses a non-standard Veronese variety that is con-
tained in a large projective space and a quadric surface lying in it. The selec-
tion of the quadric surface is equivalent to the choice of a σ-embedding (the
composition of Segre and Veronese map). Alice chooses two σ-embeddings;
she keeps one σ-embedding as a private key and publishes another σ-
embedding (equivalently, another quadric) whose image is contained in
the Veronese variety. She also publishes some automorphisms of the vari-
ety. Now, Bob can generate a private σ- embedding (his quadric surface)
by using the public σ-embedding and some automorphism of the variety.
Both of them publish hyperplanes containing the images of their private
σ-embeddings. By using their private σ-embeddings, they compute the
pullback of each other’s hyperplanes through their private embeddings to
recover the intersection of the quadric surfaces, which is a (2, 2) homoge-
neous curve, and finally compute the common j-invariant of the curve.

5.1.2 QSI algorithm

Let Pn
κ = Pn be the projective space of dimension n, where κ = Fq is a

finite field with q elements and m ∈ N+ be the degree of the Veronese
embedding vMA

3,m .

• Alice chooses a non-standard Veronese embedding

vMA
3,m : P3 → MA ·V3,m ⊂ P(m+3

3 )−1

represented by a random matrix MA ∈ GL((m+3
3 )).

• Alice constructs some automorphisms of the variety MA ·V3,m. These
automorphisms of the variety are chosen by the map φn,m as described
in Subsection 2.3.1. Precisely, she selects some automorphisms of
P3, i.e. A

′
1, . . . , A

′
r ∈ GL(4) of order q4 − 1 (with the characteristic

polynomials irreducible over Fq) and then she computes

Ai := MAφn,m(A
′
i)M−1

A

as some automorphisms of the variety. For example, we fix r = 2.

• Alice selects a secret quadric surface inside MA ·V3,m, equivalently a
σ-embedding

σ
(s)
A : P1 ×P1 → MA ·V3,m ⊂ P(m+3

3 )−1
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represented by a (m+3
3 ) × (m + 1)2 matrix M(s)

A as described in Ex-
ample 2.3.7, because a choice of a quadric surface in P3 and its em-
bedding to the large projective space P(m+3

3 )−1 are done through the
composition of Veronese and Segre embeddings.

• She constructs a hyperplane HA ⊂ P(m+3
3 )−1 containing the Im(σ

(s)
A ),

which can be obtained by choosing a vector in coker(M(s)
A ) ⊂ F

(m+3
3 )

q .

• She constructs a public quadric surface inside MA ·V3,m, equivalently
a σ-embedding

σ
(p)
A : P1 ×P1 → MA ·V3,m ⊂ P(m+3

3 )−1,

which is represented by a (m+3
3 )× (m + 1)2 matrix M(p)

A .

Alice’s public key:

• Two Automorphisms of the variety given by matrices A1, A2 ∈ GL((m+3
3 )).

• The (m+3
3 )× (m + 1)2 matrix M(p)

A .

• The hyperplane HA.

Alice’s secret key:

• The σ-embedding σ
(s)
A or equivalently its representing matrix M(s)

A of
size (m+3

3 )× (m + 1)2.

Bob’s key generation

• Bob chooses b1, b2, b3, b4 ∈ {0, . . . , q4 − 1} and then computes

M′B = Ab1
1 Ab2

2 Ab3
1 Ab4

2 .

• Bob computes the matrix MB := M′B ·M
(p)
A as a matrix of a σ-embedding

σ
(s)
B : P1 ×P1 → P(m+3

3 ) which is, in fact, the private quadratic surface
of Bob lying in the Veronese variety chosen by Alice.

• Bob computes a hyperplane HB ⊂ P(m+3
3 )−1 containing the Im(σ

(s)
B ).

Bob keeps σ
(s)
B or MB as a private key and publishes HB.

Key Exchange:
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• Bob computes the pullback σ
(s)
B

∗
HA. It is a curve of bi-degree (m, m)

in P1 ×P1.

• He uses a factorization algorithm to find a component of bi-degree
(2,2) and computes its j-invariant jB ∈ Fq.

• The probability that the residue curve of bi-degree (m− 2, m− 2) is
reducible is negligible, so the jB is well determined except for m = 4,
it which case there are two bi-degree (2, 2) curve.

• Alice computes the pullback σ
(s)
A

∗
HB. She finds the component of

bi-degree (2,2), then she computes its j-invariant jA ∈ Fq.

jA = jB is the common key of Alice and Bob.

Lemma 5.1.1. Two j-invariants are equal i.e. jA = jB.

Proof. Since P3 is isomorphic to the Veronese variety in P(m+3
3 )−1, an embed-

ding P1 ×P1 in P(m+3
3 )−1 contained in the Veronese variety is equivalent to

give an embedding of P1 ×P1 into P3, whose image is a quadric surface.
Alice and Bob have two different embeddings σ

(s)
A and σ

(s)
B whose images

are contained in the Veronese Variety, viewing these images as quadric
surfaces, denote them as QA and QB respectively. We need to find the
intersection QA ∩QB which is a genus 1 curve and is isomorphic with the
curves of Alice and Bob. Thus, identifying the Veronese variety as P3, the
embedding of Alice can be assumed as

σ
(s)
A : P1 ×P1 → QA ⊂ P3

and similarly quadratic surface of Bob as

σ
(s)
B : P1 ×P1 → QB ⊂ P3.

The pullback of QB through the σ-embedding of Alice: σ
(s)
A

∗
QB, which is

isomorphic to QA ∩QB as in the discussion of Subsection 2.2. Providing a
hyperplane section of the Veronese variety is equivalent to giving a surface
SA or SB of P3 of degree m and having QA or QB as the component. The
pullback gives the (2, 2) bi-degree component and is isomorphic to QA ∩QB
at least in the general case.
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5.1.3 Toy Example

Example 5.1.2. Key Generation: A finite field Fq with q = 16411, m = 2.
Then (m+3

3 ) = 10. Alice chooses a Veronese embedding

vMA
3,m : P3 → MA ·V3,m ⊂ P9

represented by a random 10× 10 matrix

MA =



6434 8624 1442 8172 13226 12669 9492 11160 2354 14514

5392 9365 1565 3457 14505 8874 9738 9536 4162 7052

9995 3409 12388 2962 13538 3814 8079 14920 2982 3167

3655 8237 1820 12771 15351 11681 6626 463 12211 10377

9818 15886 11814 11548 8164 7285 3865 4837 15330 12963

1377 7570 10743 8013 3980 6998 6942 13032 13042 13066

13067 8075 8684 6162 11588 10876 8172 40 2874 5514

1420 11397 14649 7628 9902 5803 4539 9387 13157 6504

5479 12138 680 8772 5036 11603 4928 6922 7011 15716

5020 14199 11398 13653 6829 2800 2834 10248 7818 1773


.

In order to choose automorphisms of the Veronese variety MA ·V3,m, she takes
two random matrices A

′
1, A

′
2 ∈ GL(4), where

A
′
1 =


15790 6966 6845 4231

8011 3668 8257 831

605 3986 7888 1157

4462 16388 7343 14432

 and A
′
2 =


5758 201 14881 3246

1376 211 9310 7851

9861 13210 1243 15

5776 13711 9047 5442


and computes

Ai = MAφn,m(A
′
i)M−1

A for i = 1, 2.

Therefore,

A1 =



15018 7379 11744 11490 10844 10009 12890 11191 1666 16235

436 6517 11689 1035 3948 8946 795 15753 3926 15920

15677 6798 4533 4266 490 14025 13668 860 5535 8840

4283 6514 6363 9652 12681 11618 16094 12376 12056 7575

2808 61 193 4741 9627 2813 12310 15657 4608 2378

2978 16021 5513 1185 10587 13067 8342 4232 16273 7589

11071 12641 1141 2329 8739 2990 13833 8438 11187 13591

6272 9096 12928 788 2799 10686 9829 7755 14429 7948

7864 1517 6114 9107 13263 4237 1312 4171 11821 3308

15726 7489 1756 8055 8245 4124 8820 10566 13627 1083


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and

A2 =



13369 15770 9803 10390 15295 14706 12527 9354 7794 14856

8447 9124 6458 12871 9932 6220 10477 9907 7816 6399

12520 9907 5244 11892 8717 12287 6801 7262 1980 2350

10666 2429 10820 3502 4264 1076 3684 4255 13409 12313

9194 4290 4445 14167 4100 3093 4026 5614 5983 2029

14093 2842 14268 7988 4402 10580 5060 12625 14393 10063

420 664 11556 7209 13025 8693 4869 550 15038 5438

14547 11245 7577 13783 8462 16111 3996 6680 8069 5781

8898 8774 15705 3270 11632 6559 12836 13643 12300 8008

8574 2669 14730 14024 11160 13511 7697 10874 9888 12951


.

She keeps the secret embedding

σ
(s)
A : P1 ×P1 → MA ·V3,m ⊂ P9

whose representing matrix is the following 10× 9 matrix

M(s)
A =



1320 2620 11135 2352 4340 5297 416 12442 1908

1896 1525 6976 10295 15677 5531 8803 13595 11350

3114 3038 4343 4194 3410 3268 13487 885 11904

3276 2264 7342 15211 11771 8806 11059 11378 10608

1196 15628 8778 15495 1815 7911 12916 4073 12975

13875 3785 8803 1247 7024 6443 9817 502 9134

10985 6007 1464 12419 1703 1835 15245 12758 14087

8343 11091 10245 1960 13606 6551 14556 5822 8517

3923 6315 11634 7502 6454 3700 13878 10216 4533

1295 11283 2418 1477 15007 7063 15300 5917 2092


.

Alice’s public keys consist of a hyperplane HA in P9 :

x0 + 1469x1 − 8066x2 + 2363x3 + 2680x4 − 1980x5 + 5540x6 + 2285x7 − 5203x8 + 7674x9

containing the image of σ
(s)
A , the embedding

σ
(p)
A : P1 ×P1 → MA ·V3,m ⊂ P9
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represented by the 10× 9 matrix

M(p)
A =



8590 8461 6748 15978 3543 12505 3129 627 16239

15293 13594 10715 12397 46 4798 12438 13145 14163

7602 769 5417 3304 7795 14719 15833 6416 11489

7632 13392 10345 322 10751 5896 16313 16225 14235

7749 15238 12591 2855 5074 771 2812 8788 8135

4852 11438 4357 5462 371 5418 13730 14255 12231

14594 176 15387 2185 3097 6726 16198 1553 99

9265 15959 1594 16353 16183 13447 3785 11208 1609

1115 10396 2580 1153 531 10719 8208 11221 4900

8475 15417 15063 16139 16064 5343 11934 5658 15627


and automorphisms A1, A2.

Bob chooses a random integers b1 = 6739, b2 = 6338, b3 = 14612, b4 = 6950;
computes an automorphism

M
′
B = Ab1

1 Ab2
2 Ab3

1 Ab4
2 =



8402 8088 3256 9623 16339 15102 7293 12071 15793 8979

12150 13336 594 3969 7180 2239 11310 9534 5091 13870

14874 5084 13249 12808 7354 2911 2559 165 5762 4748

11762 12983 12932 6250 14281 9673 573 6454 5011 909

13865 3904 4003 2096 5504 5870 13008 7737 5252 11114

4497 14177 10640 5234 10054 11048 2128 7427 14868 13717

7523 13487 7464 796 10253 2102 8736 10399 1582 5422

13783 10771 1723 3461 68 14176 15622 2233 3743 15586

8951 14717 6121 4899 9838 10902 2187 13328 3436 12577

2073 1183 13888 4233 12205 6095 15837 9761 15699 5154


of the variety MA ·V3,m. He calculates

MB = M
′
BM(p)

A =



10316 70 5132 5007 2548 7354 732 15368 4469

5158 10610 12687 4020 10647 12187 7885 10061 12566

3263 3196 12137 3814 6090 10420 105 4761 15514

6142 8180 13169 11135 2750 15611 14406 14894 6055

15633 4970 9093 14779 7475 15556 8779 451 14227

14863 3370 2268 920 369 9234 10790 2659 8773

9388 1235 8573 16249 16013 7724 2767 8031 2984

15445 12709 8615 5043 11409 2875 2516 11029 9782

11591 10626 11760 10191 7664 14341 10404 8175 12554

13748 3883 2870 8980 15814 12948 9672 8447 276


as a representing matrix of the secret σ-embedding

σ
(s)
B : P1 ×P1 → MA ·V3,m ⊂ P(m+3

3 ).
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He also computes a hyperplane HB in F9 given by

x0 − 5404x1 + 3650x2 + 465x3 + 6073x4 + 7863x5 − 162x6 − 7294x7 − 7707x8 + 8095x9

containing the image of σ
(s)
B .

Key Exchange:
Bob computes the pullback

C1 := σ
(s)
B

∗
HA = 4094x2

0x2
2 + 433x0x1x2

2 + 262x2
1x2

2 + 1048x2
0x2x3 + 5309x0x1x2x3

− 4413x2
1x2x3 + 5200x2

0x2
3 − 4806x0x1x2

3 − 1129x2
1x2

3,

which is a bi-degree (2,2) curve and computes its j-invariant jB = j(C1) =
4026 ∈ Fq.
Alice computes the pullback

C2 := σ
(s)
A

∗
HB =− 7091x2

0x2
2 − 5735x0x1x2

2 − 2687x2
1x2

2 + 1479x2
0x2x3 + 6077

x0x1x2x3 + 8150x2
1x2x3 + 1351x2

0x2
3 + 7198x0x1x2

3 + 4625x2
1x2

3

and computes its j-invariant jA = j(C2) = 4026 ∈ Fq, which is the common key.

5.2 Public-key encryption

The QSI key exchange technique can be used to design a public key crypto-
system, similar to the ElGamal public key encryption scheme.
Suppose Bob wants to send a message m to Alice.

• Public parameters to both parties
A finite field Fq, m ∈ N+ and a family of hash functions H = {Hk :
k ∈ K} from the finite field Fq to the message space {0, 1}w, and K be
a finite set.

• Encryption
Bob has access to the Alice’s public data (A1, A2, M(p)

A , HA, k). He

computes a random ephemeral key, a σ embedding σ
(s)
B : P1 ×P1 →

MA · V3,m ⊂ P(m+3
3 )−1. He first computes the j-invariant of the bi-

degree (2,2) curve jB as described before. Then he encrypts the mes-
sage m ∈ {0, 1}w as

c = Hk(jB)
⊕

m.

The ciphertext is (HB, c).
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• Decryption
Alice gets the ciphertext (HB, c) and using her private embedding
σ
(s)
A : P1 × P1 → MA · V3,m ⊂ P(m+3

3 )−1, she first recovers the (2, 2)
curve and its j-invariant jA, and recovers the message m as

m = Hk(jA)
⊕

c.

5.3 Attacks against QSI

5.3.1 Underlying cost of the key exchange

We first observe the space complexity of public and private keys.
Keys of Alice:

• Two public square matrices A1, A2 of size (m+3
3 ) require O(m6 log q)

space.

• Public matrix M(p)
A of size (m+3

3 )× (m + 1)2 requires O(m5 log q).

• Public hyperplane HA, a vector of length (m+3
3 ), requires O(m3 log q).

• Private σ-embedding σ
(s)
A or its matrix M(s)

A of size (m+3
3 )× (m + 1)2

requires O(m5 log q).

Keys of Bob:

• Private σ-embedding σ
(s)
B : P1 ×P1 → P(m+3

3 ) or its matrix MB of size
(m+3

3 )× (m + 1)2 requires O(m5 log q).

• Public hyperplane HB, a vector of length (m+3
3 ), occupies O(m3 log q).

Now, we analyze asymptotic steps required to share a common key.

• Number of steps to produce A1, A2, σ
(s)
A is bounded by O(M(log q)m)+

O(m9), where M(x) denote the number of steps required to multiply
two x-bits integers.

• To compute the hyperplanes HA and HB, it requires to solve a system
of linear equation which takes at most O(m3ω) steps [69], where
2 < ω ≤ 3 is the matrix multiplication exponent.
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• For private σ-embedding of Bob σ
(s)
B , it needs O(m3ω log m).

• To both Alice and Bob

– Pull back of hyperplane by private σ-embeddings in O(M(log q)m3).

– Factorization of bi-degree (m, m) can be computed efficiently by
the method given in [10].

5.3.2 Brute force attempts

We give the approximate steps needed to attack the keys.

• The number of quadric hypersurfaces contained in HA i.e. amount of
brute-force needed to find σ

(s)
A :

We count M(s)
A such that HA is in cokerM(s)

A i.e. HAM(s)
A = 0. This

implies that the columns of M(s)
A are in the kernel of HA, which is

isomorphic with F
(m+3

3 )−1
q , therefore choosing (m + 1)2 elements of

F
(m+3

3 )−1
q require total of q((

m+3
3 )−1)(m+1)2

attempts.

• Possible number of σ
(s)
B (necessarily depending on r):

For r = 2, choices of bi for i = 1, . . . , 4 determine σ
(s)
B therefore there

are q16 choices.

• Running over all possibilities for σ
(s)
B , the number of distinct options

for σ
(s)
B

∗
HA is q16.

• Similarly, the number of distinct options for σ
(s)
B

∗
HA is q((

m+3
3 )−1)(m+1)2

.

• Valid j-invariants (i.e. amount of brute-force needed to find jA = jB) :
Since j-invariants are defined in Fq so there are q choices.

Since the j-invariants belong to the base field Fq, we have to choose q ≈ 2128

for the classical 128-bit security level. This attack suggests that small values
of m could work but we will see that the brute force is not the best attack.

5.3.3 Other possible attack strategies

Here we summarize other possible attack strategies against QSI. One of the
possibilities is a direct key recovery attack targeting the private keys, more
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precisely, to the secret σ-embeddings or the Veronese variety hidden by the
automorphism of the ambient space. We state the following underlying
problem of the proposed key exchange scheme.

Problem 5.3.1. Let κ = Fq be the field of cardinality q. Suppose

vM
3,m : P3 → M ·V3,m ⊂ P(m+3

3 )−1

be a non-standard Veronese embedding represented by a random matrix M ∈
GL((m+3

3 )) with its variety M ·V3,m and let

σ(p) : P1 ×P1 → M ·V3,m ⊂ P(m+3
3 )−1

σ(s) : P1 ×P1 → M ·V3,m ⊂ P(m+3
3 )−1

be σ-embeddings represented by (m+3
3 )× (m + 1)2 matrices M(p) and M(s) re-

spectively. A hyperplane H containing Im(σ(s)) is represented by a vector in
coker(M(s)) ⊂ F(m+3

3 ). Furthermore, let A1 and A2 in GL((m+3
3 )) be two matri-

ces of order q4 − 1 representing automorphisms of the variety M ·V3,m. Given:

• the finite field Fq,

• the degree of the Veronese embedding m ∈N+,

• two automorphisms of the variety given by matrices A1, A2,

• the matrix M(p) and

• a hyperplane H containing the image of σ(s),

determine σ(s)(equivalently its corresponding matrix) or the matrix M represent-
ing the non-standard Veronese variety M ·V3,m.

Problem 5.3.1 of determining the Veronese variety, say V = M · V3,m
and the σ-embedding σ(s) reduce to a problem of solving multivariate and
high degree polynomial equations. Since Ai are automorphisms of V, we
have

Ai M = Mφ3,m(A) (5.1)

for some matrix A ∈ GL(4). Consider A = (aij) be 4× 4 and M = (mij)

be (m+3
3 ) × (m+3

3 ) matrices of unknowns. Substituting these matrices in
Equation 5.1, we get a system of multivariate polynomial equations of
bi-degree (1, m) in variables mij and aij, and elimination of the variables
aij changes the system into a system with very high degree equations and
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large number of variables as m gets bigger.

Likewise, an attempt to find σ(s) such that Im(σ(s)) ⊂ V also reduces to
the similar multivariate problem. The condition Im(σ(s)) ⊂ V implies that

σ(s) = M ◦ v3,m ◦ A ◦ s1,1

for some A ∈ Aut(P3) since σ(s) is a composition of non-standard Segre
and Veronese. As before, the matrix Mσ, representing the embedding
M ◦ v3,m ◦ A ◦ s1,1, is a matrix whose components are bi-homogeneous poly-
nomials of bi-degree (1, m) in the set of variables {mij} and {aij}, where
aij and mij are as above. Now, imposing the given vector representing
the hyperplane H as a co-kernel of Mσ, we get a system of a multivariate
polynomials of bi-degree (1, m) in the variables mij and aij as above.

Shared Secret Recovery: Another underlying problem of the QSI key
exchange is a problem of recovering the common secret, which is the bi-
degree (2, 2) homogeneous curve embedded as a curve of degree 4m in the
Veronese variety.

Problem 5.3.2. Let κ = Fq be the finite field with q elements. Suppose that
V ⊂ P(m+3

3 )−1 is a 3-dimensional non-standard Veronese variety. Assume the
homogeneous ideal of V is known but it’s isomorphism with P3 is not known. Let
H1 and H2 be two hyperplanes of P(m+3

3 )−1. Find the irreducible decomposition of
the curve V ∩ H1 ∩ H2 as a curve of degree 4m and a curve of degree m3 − 4m.

The equivalent problem in terms of defining ideals can be stated as the
problem of primary decomposition of the ideal I = (IV , LH1 , LH2) where
IV is the homogeneous ideal of V; LH1 and LH2 are the linear equations
defining the hyperplanes H1 and H1. Here, the Gröbner basis of the ideal I
gives the information of the shared secret.
The Veronese variety V is defined by m(m2 − 1)(m3 + 12m2 + 59m + 66)
homogeneous polynomials of degree 2.

Proposition 5.3.3. [90] The Veronese variety V3,m is an intersection of N(V3,m) =
m(m2− 1)(m3 + 12m2 + 59m + 66) linearly independent quadric hypersurfaces
in (m+3

3 ) variables. .

These defining polynomials can be obtained by some linear algebra.
Therefore, the main difficulty lies in the computation of irreducible com-
ponents of the variety V ∩ H1 ∩ H2, or equivalently to find the primary
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decomposition of the ideal generated by the quadratic polynomials defin-
ing V and the two linear polynomials defining H1 and H2.
The Veronese variety V is of degree m3.

Proposition 5.3.4. The Veronese variety V3,m ⊂ P(n+m
3 )−1 is a 3-dimensional

projective variety of degree m3.

Proof. In general deg(Vn,m) = mn, see for example in [80, 4.2.7]

It follows that the curve V ∩ H1 ∩ H2 is curve of degree m3 and it is
reducible with a component of degree 4m because of the following proposi-
tion.

Proposition 5.3.5. [90] The image of a curve of bi-degree (2, 2) through a σ-
embedding P1 ×P1 → P(m+3

3 )−1 is a curve of degree 4m.

Once the irreducible component of V ∩ H1 ∩ H2 of degree 4m is known,
then one can evaluate the j-invariant of the component of degree 4m, which
is the common secret to both Alice and Bob.

Attack to the Private Keys: Suppose Eve wants to attack Bob’s private
key. She chooses e1, e2, e3, e4 ∈ {0, . . . , q4 − 1} and then computes

M′E = Ae1
1 Ae2

2 Ae3
1 Ae4

2 .

She further computes the matrix ME := M′E · M(p)
A as a matrix of a

σ-embedding σE : P1 ×P1 → P(m+3
3 ) and imposes the condition

HB ∈ coker (ME) .

This may require q16 attempts. But, the possible quadric surfaces of P3 form
a 9 dimensional projective space therefore the brute force attack requires
only q9 attempts. This shows q9 trials can generate a σ-embedding say σE
such that its image coincide with the image of the private σ-embedding of
Bob i.e. Im(σE) = Im(σ

(s)
B ).

5.3.4 Gröbner basis computation

The number of steps required to compute Gröbner algorithms (Faugère F4,
F5 [37]) is bounded by

O

(
ld
(

N + d− 1
d

)ω)
(5.2)
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for a graded monomial ordering up to degree d, where N is the number
of variables, l is the number of equation in the system of homogeneous
polynomials, and ω is the matrix multiplication exponent [7, 8]. In Shared
Secret Recovery in Section 5.3.3, we have N = (m+3

3 ) and l = N(V3,m) + 2,
where N(V3,m) given in Proposition 5.3.3. The complexity is determined by
the highest degree of the polynomials that occurs in the reduction process
of the Gröbner basis algorithms, this degree is also called the degree of reg-
ularity in the literature. We were unable to determine how the degree of
regularity depends on the parameter m, and hence we cannot give a precise
estimate for the complexity of the Gröbner basis attack. It is expected that
the degree of regularity grows at least linearly in m, implying that the
complexity of the F4/F5 algorithms grows at least exponentially. Experi-
mentally, the running time increases rapidly and becomes inaccessible even
with some values in m ≤ 10, therefore we hope that a value of m around 20
will be safe for at least 128 bit classical security.
We have posted a code to compute the Gröbner basis of the ideal I =
(IV1 , LH1 , LH2) at https://github.com/mgyawali/QSI-Key-Exchange, which
is written for Magma [15].
Our experiment was done on the computer of the University of L’Aquila
[70].
Finite field is Fq and m is the degree of the Veronese embedding.
Algorithm used : Faugère F4
Monomial basis order : Graded Reverse Lexicographical
Magma V2.24-2
Time required for some values of m is given in Table 5.1.

q = 65521 q =NextPrime(2128)
m Time 1(sec) Time 2(sec) Time 3(sec) m Time(sec)
3 0.440 0.450 0.449 3 3.110
4 20.519 19.629 20.359 4 161.2
5 613.620 608.470 623.980 5 Aborted
6 Aborted (after 6 hours)

Table 5.1: Gröbner basis computation

Large values of m makes the key exchange excessively slow. We believe
that some variants or some technique to accelerate the system could be
possible in future. Therefore, we leave the complete security analysis and
development of some possible variants for the future research.

https://github.com/mgyawali/QSI-Key-Exchange


Chapter 6

Signature scheme from the secant
variety of the Grassmannian

6.1 Introduction

Multivariate public key authentication schemes like Rainbow [38], one of
the three NIST post-quantum signature finalists [67], is known for rela-
tively fast signing and verification but large public key size in comparison
to other post-quantum signature schemes. In this chapter, we purpose a
new multivariate signature scheme, a joint work with Daniele Di Tullio [91],
based on the difficulty of finding points inside the shifted secant variety of
the Grassmannian when only the implicit equations are known. A purpose
of the proposed signature scheme is to start a new line of work toward
an efficient signature scheme with small key size. But, we leave the detail
security analysis for the future research.

The main idea of the signature scheme can be summarized as follows:

1. Alice chooses a secret projective variety Y, which is a shifted (through
an automorphism of the ambient space) Secant variety of the Grass-
mannian.

2. She publishes a set of equations vanishing on the variety.

3. A message is encoded into a linear subspace L of the ambient space.
A signature is a point P lying in the intersection Y ∩ L.

4. Alice can quickly sign a message by using the Plücker embedding of
the Grassmannian and her secret automorphism.

121
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5. Signature P can be verified easily by checking whether it satisfies or
not the set of public equations and the system of linear equations
defining L.

We have implemented our algorithm in a computer algebra system Sage-
Math [35] and is available at
https://github.com/mgyawali/SSGrass.

6.2 Preliminaries

In this section, we describe some background required to explain the sig-
nature scheme. There are good references for the materials covered in this
section, for example, see in [1, 39, 76, 80, 92].

6.2.1 Grassmannian

Projective space Pn
κ = Pn of dimension n parameterizes the lines through

the origin that are contained in An+1. Equivalently, it parametrizes the
1-dimensional subspaces of a κ-vector space V of dimension n + 1. The
Grassmannian is an immediate generalization of this concept.

Definition 6.2.1. Let V be a n dimensional vector space over κ. For 1 ≤ d ≤ n,
the Grassmannian of d-subspaces of V is the set

G(d, V) = {W ≤ V : dim(W) = d}.

When V = κn, this is denoted by G(d, n).

Recalling from the basic linear algebra, two ordered sets of linearly

independent vectors of V, B =

~v1
...
~vd

 and B′ =

~w1
...
~wd

, generate the same

subspace W ⊂ V if and only if there is an invertible matrix M ∈ GL(d)
such that

B′ = M · B.

The following proposition implies that Grassmannian can be identified by
a set of matrices of some fixed rank up to a certain equivalence relation.

https://github.com/mgyawali/SSGrass
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Proposition 6.2.2. Let G(d, n) be the set of d× n matrices A of rank d modulo
the equivalence relation

A ∼ A′ ⇐⇒ ∃M ∈ GL(d) : A = MA′.

Then there is a bijection
G(d, n)↔ G(d, n),

which maps the class of a matrix A to the vector space spanned by the rows of A.

From now on, we will not distinguish G(d, n) and G(d, n).
Similar to the case of the projective space, affine charts can also be defined
for the Grassmannian. Let S any subset of {1, ..., n} such that #S = d and
denote by US ⊂ G(d, n) the subset of matrices for which the d× d minors
corresponding to S is non-zero. Note that G(d, n) is covered by these
subsets US. Furthermore any [M] ∈ US admits a unique representative for
which the d× d sub-matrix corresponding to S is the identity matrix: in
fact if MS is such a sub-matrix, then we can take M−1

S M as a representative.
It follows that US is identified with Ad(n−d).

Example 6.2.3. Suppose that S = {1, ..., d}, then denoting by HJ the operator of
horizontal joint of two matrices (having the same number of rows), we have the
following characterization

US = {HJ(Id, B) : B ∈ Matd×(n−d)(κ)}.

We want to characterize G(d, n) as a projective variety, i.e., as an object
defined by polynomial equations in a projective space. The first aim is to
find the projective space on which it lies. We will observe this with the help
of an exterior power of a vector space.

Definition 6.2.4. Let V be an n-dimensional κ-vector space, 0 < d ≤ n. Then
the d-th exterior power of V, denoted by

∧d V, is the vector space spanned by the
tensors of the form v1 ∧ v2 · · · ∧ vd, where ∧ satisfies the following properties:

• it is d-linear:

a · (v1 ∧ ...∧ vd) = (av1) ∧ v2...∧ vd = ... = v1 ∧ ...∧ vd−1 ∧ (avd),

v1∧ ...∧ (vi + v′i)∧ ...∧ vd = v1∧ ...∧ vi∧ ...∧ vd + v1∧ ...∧ v′i ∧ ...∧ vd;

• it is antisymmetric:

vσ(1) ∧ ...∧ vσ(d) = (−1)sgn(σ)v1 ∧ ...∧ vd,

for any σ ∈ Sd, where Sd denotes the d-th symmetric group.
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Remark 6.2.5. Note that the antisymmetric condition implies, for characteristic
> 2, that

dim(Span(v1, ..., vd)) < d⇒ v1 ∧ ...∧ vd = 0. (6.1)

In characteristic 2, when there is no distinction between symmetry and antisym-
metry, it is possible to define the ”antisymmetric” property by the symmetric one
with Condition 6.1.

Fix a basis {e1, . . . , en} of the vector space V, then the set

{ei1 ∧ · · · ∧ eid : 1 ≤ i1 < . . . ≤ id ≤ n} (6.2)

forms a basis for
∧d(V), with dimension (n

d).

Lemma 6.2.6. Let W be a d-dimensional subspace of an n-dimensional vector

space V over κ. Let U =

u1
...

ud

 andW =

w1
...

wd

 be two bases of W and M be a

d× d invertible matrix such that

U = MW .

Then
u1 ∧ · · · ∧ ud = det(M) · w1 ∧ · · · ∧ wd.

This lemma shows that whatever the bases we choose for W, the corre-
sponding wedge product is uniquely determined up to a scalar multiplica-
tion. Therefore, the following map

ι : G(d, V)→ P(
∧d

V)

given by W 7→ [v1 ∧ · · · ∧ vd], where {v1, . . . vd} is a basis of W ∈ G(d, V),
is well defined.

Proposition 6.2.7. The map ι : G(d, V)→ P(
∧dV) defined above is an isomor-

phism onto the image, called Plücker embedding.

Proof. See in [63, Theorem 5.2.1]

By Proposition 6.2.7, the Grassmannian G(d, V) can be seen as a subset
of a projective space.

Fix a basis {e1, ..., en} of V, then Set 6.2 is a basis of
∧d V. In fact, the

Plücker embedding maps [M] to the sequence of its minors of rank d.

The image ι(G(d, V)) is a projective variety defined by a set of quadratic
equations.
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Theorem 6.2.8. The image of the Plücker embedding ι(G(d, V)) ⊂ P(
∧d(V))

is a projective variety defined by quadratic equations, called Plücker relations. Call
{Xi1,...,id}1≤i1<...<id≤n the coordinates of P(

∧2 V), then for any couple of ordered
sequences

1 ≤ i1 < i2 < ... < id−1 ≤ n, 1 ≤ j1 < j2 < ... < jd+1 ≤ n

the following equations hold:

d+1

∑
l=1

Xi1,...,id−1,jl Xj1,..., ĵl ,...,jd+1
= 0,

where j1, ..., ĵl, ..., jd+1 is the sequence obtained by discarding jl by the sequence
j1, ..., jd+1.

Proof. See in [63, Theorem 5.2.3]

6.2.2 Grassmannian of planes and its secant variety.

In this section, we focus on the case d = 2. This case is interesting be-
cause both the Grassmannian and its secant variety are defined by sparse
equations.

Definition 6.2.9. Let X ⊂ Pn be a projective variety. The secant variety of X,
denoted by Sec(X) is the smallest projective variety containing the locus⋃

P,Q∈X
lP,Q,

where lP,Q denotes the line joining P and Q.

This definition implies that Sec(X) contains elements of the form [ax1 +
bx2], where x1, x2 ∈ An+1 are such that [x1], [x2] ∈ X, a, b ∈ κ. When
X = G(d, n), Sec(X) parameterizes the tensors which can be written as
sum of two indecomposable tensors.

Definition 6.2.10. Let A be an antisymmetric matrix, then the square root of its
determinant i.e.

√
det(A) is called the Pfaffian of A.

We observe that there exists a correspondence between elements of∧2 V and n × n antisymmetric matrices: for any t ∈ ∧2 V, write t =
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∑1≤i<j≤n tijei ∧ ej. Then the corresponding n × n antisymmetric matrix
is Mt = (mij), where

mij =


tij if i < j
0 if i = j
−tij if i > j.

The rank of the matrix Mt is strictly related to the minimum number of
simple tensors in which t can be decomposed.

Proposition 6.2.11. Let t ∈ ∧2 V and Mt be its associated antisymmetric matrix.
Then

rank(Mt) = 2nt,

where nt is the minimum number of simple tensors in which t can be decomposed.

Remark 6.2.12. An antisymmetric matrix can have only an even rank and there
is an alternative criteria for detecting its rank.

Definition 6.2.13. Let A = (aij) be an n× n matrix and B = (b)ij be its sub-
matrix of order m×m. Then B is centred at the diagonal if there exists a sequence
1 ≤ s1 < ... < sm ≤ n such that

bij = asi,sj .

A minor of A is called centred at the diagonal if it is the determinant of a sub-matrix
of A centred at the diagonal.

Remark 6.2.14. If A is (anti)symmetric, then so is any sub-matrix centred at the
diagonal.

Proposition 6.2.15. Let M be an antisymmetric matrix. Then the rank(M) ≤
r− 2 if and only if all the r× r minors that are centered at the diagonal vanish.

There is an immediate consequence for the description of G(2, n) and
Sec(G(2, n)).

Corollary 6.2.16. Let [t] ∈ P(
∧2 V). Then:

• t ∈ G(2, V) if and only if rank(Mt) = 2 if and only the Pfaffians of the
4× 4 centered at the diagonal sub-matrices vanish;

• t ∈ Sec(G(2, V)) if and only if rank(Mt) ≤ 4 if and only the Pfaffians of
the 6× 6 centered at the diagonal sub-matrices vanish.
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In particular, Sec(G(2, V)) is defined by (n
6) cubic polynomials, which

are quite sparse. For example, the Pfaffian

pf


0 X0 X1 X2 X3 X4
−X0 0 X5 X6 X7 X8
−X1 −X5 0 X9 X10 X11
−X2 −X6 −X9 0 X12 X13
−X3 −X7 −X10 −X12 0 X14
−X4 −X8 −X11 −X13 −X14 0


is a polynomial with 15 non-zero monomials. Therefore, one expects that if
we shift Sec(G(2, n)) by a sparse automorphism of Pn then we will have a
variety defined by sparse cubic equations.

The dimension of Sec(G(2, n)) is known.

Proposition 6.2.17. Let d = dim(G(2, n)) be the dimension of G(2, n) (so
d = 2(n− 2)), then dim(Sec(G(2, n))) = 2d− 3.

6.2.3 Points in linear sections of the Grassmannian

A better approach for generating random points inside a linear section of
G(d, n) is not by using Gröbner bases, but by using the affine charts and
the Plucker embedding. If we fix a subset S ⊂ {1, ..., n} of cardinality d,
then the Plücker map restricts to an embedding

Ad(n−d) → P(n
d)−1.

Let L ⊂ P(n
d)−1 be a linear subspace of codimension n− d. Then it is possible

to find points inside L ∩ G(2, n) by just using linear algebra. To illustrate
the procedure, we consider the case in which S = {1, ..., d}. Suppose

L =


L1(X) = 0
...
Ln−d(X) = 0

then we can choose a vector of unknowns

~x = (1, 0, ..., 0, xd+1, ..., xn)

and d− 1 random vectors of κn

~a1 =(0, 1, ..., 0, a1,d+1, ..., a1,n)

...
~ad−1 =(0, ..., 0, 1, ad−1,d+1, ..., ad−1,n)
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and solve the linear system in xd+1, ..., xn:
L1(~x ∧~a1 ∧ · · · ∧~ad−1) = 0
...
Ln−d(~x ∧~a1 ∧ · · · ∧~ad−1) = 0.

In general, this system has a unique solution ~x0, then

P = [~x0 ∧~a1 ∧ · · · ∧~ad−1]

is a point of G(d, n) ∩ L.

6.3 New signature scheme

In this section we present a signature scheme, which consists of three parts:
key generation, signing and verification. We propose a signature scheme
using Sec(G(2, n)), but it can be easily adapted to G(d, n) as well. We use a
vector space V of dimension n over a finite field κ = F2` of characteristic 2
then V is identified with κn.

6.3.1 Key generation

The private key consists of a random automorphism φ of V = κn, which
is sparse and defined over F2. The public key is a set of cubic equations
vanishing on φ(Sec(G(2, n))).
Private key generation:

1) Alice chooses a random upper triangular, invertible and sparse (n
2)×

(n
2) matrix M′A.

2) Alice chooses two random (n
2)× (n

2) permutation matrices A1, A2;

3) Alice defines MA = A1M′A A2 and then the private key is

Kpri
A = (MA, M−1

A ).

If a polynomial F(X), where X =

X0
...

Xn

, vanishes on a variety Y ⊂ Pn

and M is an invertible (n + 1)× (n + 1) matrix, then F(M−1X) vanishes
on MY. This fact gives an easy way to generate the public key.
Public key generation:
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1) Alice chooses a random subset {F1(X), ...., Fm(X)} of the set of (n
6)

Pfaffians defining Sec(G(2, n)).

2) She computes Gi(X) = Fi(MAX) for i ∈ {1, ..., m} and a set

Kpub
A = {G1(X), ..., Gm(X)}

denoting the public key. Note that Gi vanishes on M−1
A Sec(G(2, n))

for i ∈ {1, ..., m}.

6.3.2 Signature generation and verification

A message D is encoded into a linear subspace of P(n
2)−1 cut by n− 2 linear

equations {L1 = 0, ..., Ln−2 = 0} defined over F2.

1) Alice choose a random vector~a ∈ κn of the form~a = (0, 1, a3, ..., an)
and a vector of unknowns ~x = (1, 0, x3, ..., xn);

2) Alice computes

L′1(X) = L1(M−1
A X), ..., L′n−2(X) = Ln−2(M−1

A X)

and imposes the condition

L′i(~x ∧~a) = 0, ∀i ∈ {1, ..., n− 2}, (6.3)

where ~x ∧~a is identified with its coordinates with respect to the basis
{ei ∧ ej : 1 ≤ i < j ≤ n}. Here 6.3 is a linear system in {x3, ..., xn},
which has a unique solution (b3, ..., bn) ∈ κn−2 in general;

3) Let~b = (1, 0, b3, ..., bn), then P = [M−1
A (~a ∧~b)] ∈ D ∩ (M−1

A G(2, n)).
So the point P satisfies the system of equations:

G1(X) = 0
...

Gm(X) = 0
L1(X) = 0

...
Ln−2(X) = 0

and P ∈ G(2, n) ∩ D.
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4) Alice repeats the procedure in 1)− 3) and finds another point Q ∈
(M−1

A G(2, n)) ∩ D;

5) Alice chooses two random vectors of ~vP,~vQ ∈ κ(
n
2) such that [vP] =

P, [vQ] = Q and defines SA = [vP + vQ] ∈ D ∩ (M−1
A Sec(G(2, n))) to

be the signature of D.

If Bob wants to verify the signature, he has to verify

Gi(SA) = 0 for i ∈ {1, ..., m}
Li(SA) = 0 for i ∈ {1, ..., n− 2}.

6.3.3 A toy example

Here we give a toy example with n = 6, κ = F2. The ambient space
of G(2, 6) is P14, Sec(G(2, 6)) is a degree 3 hypersurface defined by the
equation (for n = 6, there is only one equation)

X4X7X9 + X3X8X9 + X4X6X10 + X2X8X10 + X3X6X11+

X2X7X11 + X4X5X12 + X1X8X12 + X0X11X12 + X3X5X13+

X1X7X13 + X0X10X13 + X2X5X14 + X1X6X14 + X0X9X14 = 0.
(6.4)

The private key is given by the two matrices:

MA =



0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 1


and

M−1
A =



0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
0 1 0 0 0 0 0 0 1 1 0 0 0 1 1
0 0 1 0 0 0 0 1 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


.
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Applying the transformation of coordinates X 7→ MAX to (6.4), we get the
Kpub

A given by the equation

X2
0X4 + X1X2X5 + X2

2X5 + X0X4X6 + X1X4X6+

X2X4X6 + X0X3X7 + X0X4X7 + X3X6X7 + X3X2
7+

X1X2X8 + X2
2X8 + X2X3X8 + X0X4X8 + X0X5X8+

X3X6X8 + X0X2
8 + X1X2X9 + X2

2X9 + X0X4X9+

X4X6X9 + X1X7X9 + X2X7X9 + X4X7X9 + X8X2
9+

X1X7X10 + X2X7X10 + X0X8X10 + X8X9X10 + X0X4X11+

X3X7X11 + X4X9X11 + X0X2X12 + X2X3X12 + X0X4X12+

X0X7X12 + X1X7X12 + X2X7X12 + X0X8X12 + X2X9X12+

X8X9X12 + X0X5X13 + X3X6X13 + X0X8X13 + X2
9X13+

X0X10X13 + X9X10X13 + X0X12X13 + X9X12X13 + X0X4X14+

X0X5X14 + X4X6X14 + X5X6X14 + X4X7X14 + X5X7X14+

X0X8X14 + X6X8X14 + X7X8X14 + X0X9X14 + X6X9X14+

X7X9X14 + X4X11X14 + X5X11X14 + X8X11X14 + X9X11X14+

X2X12X14 + X6X12X14 + X9X12X14 + X10X12X14 + X2
12X14+

X9X13X14 + X10X13X14 + X12X13X14 = 0.

(6.5)

Suppose Alice wants to sign a message D, corresponding to the system of
linear equations:

L1 = X0 + X2 + X3 + X4 + X5 + X7 + X10 + X11 + X12 = 0
L2 = X2 + X4 + X6 + X13 + X14 = 0
L3 = X3 + X4 + X10 + X11 + X13 + X14 = 0
L4 = X1 + X2 + X3 + X4 + X5 + X6 + X9 + X12 + X13 + X14 = 0.

Alice shifts the message D through the matrix M−1
A , by computing L′i(X) =

Li(M−1
A X). She obtains the system

DA :


X1 + X4 + x6 + X9 + X10 + x12 + X13 = 0
X0 + X1 + X3 + X5 + X6 + X7 + X8 + X9 + X10 + X14 = 0
X0 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X13 + X14 = 0
X1 + X2 + X3 + X4 + X5 + X6 = 0.

Alice chooses a vector of unknowns~x = (1, 0, x3, x4, x5, x6) and two random
vectors~a1 = (0, 1, 1, 1, 1, 1),~a2 = (0, 1, 1, 0, 0, 1). The condition that ~x ∧~a1 ∈
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DA corresponds to the linear system
x6 = 0
x3 + x5 + 1 = 0
x4 + x6 = 0
x3 + x4 = 0

whose solution is (0, 0,−1, 0). Call x1 = (1, 0, 0, 0,−1, 0), P1 = [x1 ∧ a1].
Similarly, the condition that ~x ∧~a2 ∈ DA corresponds to the linear system

x4 + x5 = 0
x3 + x5 + x6 = 0
x3 + x4 + x5 = 0
x3 + x4 = 0

whose solution is (0, 0, 0, 0). Call x2 = (1, 0, 0, 0, 0, 0), P2 = [x2 ∧ a2]. Then

P1 = [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1],

P2 = [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

P1, P2 ∈ G(2, 6) ∩ DA. Call P = [x1 ∧ a1 + x2 ∧ a2], then

P = [0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1]

is a point of Sec(G(2, 6)) ∩ DA. It follows that

SA = M−1
A · P = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0]

is a point of M−1
A Sec(G(2, 6)) ∩ D. Therefore, it satisfies Equation (6.5) and

Li(SA) = 0 for i ∈ {1, 2, 3, 4}.

6.4 Security analysis

Suppose, Frank wants to forge a signature of Alice for a message D =
{L1, ..., Ln−2}. Generic techniques, for instance, by using Grobner basis to
solve the polynomial system like{

Gi = 0 for i ∈ {1, ..., m}
Li = 0 for i ∈ {1, ..., n− 2}
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takes exponential time in general but it depends heavily on the nature of
the problem. Faugère’s F4 and F5 [37] are currently the best algorithm to
compute Gröbner basis. The number of steps required to compute Gröbner
basis is bounded by

O

(
ld
(

N + d− 1
d

)ω)
(6.6)

for a graded monomial ordering upto degree d, where N is the number
of variables, l is the number of equation in the system of homogeneous
polynomials, and ω is the matrix multiplication exponent [8]. In our context,
we estimate according to our experimental evidences.
If Alice produces around (n

6) signatures, Frank is able to compute a basis
of the vector space of cubic equations vanishing on M−1

A Sec(G(2, n)). This
fact allows Frank to use two possible approaches:

1) Trying to reconstruct the matrix MA;

2) Apply a Gröbner basis approach, after having a full set of equations
defining Sec(G(2, n)).

We need to study the complexity of the second approach: in general, it is
possible to give a very rough upper bound but the number of steps required
may be very less in practice, so it is preferable an empirical analysis. We
expect that the value of n will not be too large for efficiency reason otherwise
we may require larger base field to make the message space large enough.
In fact, if we have a valid signature P defined over κ for a message D,
then the probability that it is also a valid signature for another message D′

is 1
(#κ)n−2 . So signatures defined over a smaller field must be considered

invalid for smaller values of n. In our case, N = (n
2) and experimentally we

believe d = n2 in the equation 6.6, this gives an exponential complexity.
Secant varieties of Grassmannian are varieties with many extra structure.

For an attacker, it is tempting to try and exploit this structure in order to
recover the secret linear change of the variables transforming the disguised
variety M−1

A Sec(G(2, n)). The same is true for the hidden Veronese variety
MA · V3,m in Subsection 5.1.2. There are some attempts to parameterize
algebraic varieties [73] and certain types of surfaces [52]. It would be
an interesting problem to see an impact of this technique to the Secant
variety of the Grassmannian and Veronese variety over a field of non-zero
characteristics.
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n Time Memory uses
10 637.889 seconds 7457.69 MB
11 240327.910 seconds 260880.47MB
12 Aborted in two weeks 462414.7MB (In two weeks running time)

Table 6.1: Gröbner basis computation

6.4.1 Gröbner basis computation

The variety M−1
A Sec(G(2, n)) has dimension 2d− 3, where d = 2(n− 2) =

dim(G(2, n)). So, if we want to find points on (M−1
A Sec(G(2, n))) ∩ D,

where D is a codimension n− 2 linear subspace of P(n
2)−1, in general, we

need to intersect with other 2d− 3− (n− 2) = 2d− n− 1 hyperplanes.
In our code, we will consider hyperplanes of the form Xi = ciXi0 , where
ci ∈ κ. If we dehomogenize with respect to the variable Xi0 (i.e. we set
Xi0 = 1), it is equivalent to put 2d− n conditions of the form Xi = ci. We
assume that the forger Frank knows a basis of the vector space of cubic
forms vanishing on M−1

A Sec(G(2, n)).
We have posted a MAGMA [15] code at https://github.com/mgyawali/
SSGrass. We implemented the code in a machine with the processor Intel(R)
Xeon(R) CPU E7-4850 v3 @ 2.20GHz and 1.585 TB RAM and got timings as
in Table 6.1.
Finite field : F213

Order: Graded Reverse Lexicographical
Algorithm used : Faugère F4
Magma V2.23-8 a

6.5 Estimated key sizes

6.5.1 Private key size

The private key consists of the two matrices MA and M−1
A , which are, by

construction, sparse binary matrices with around 2n components equal to
1. So they require storage of around 4n bits.

https://github.com/mgyawali/SSGrass
https://github.com/mgyawali/SSGrass
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6.5.2 Public key size

The public key is given by a set of m equations of the form

{Fi(MAX) : i ∈ {1, ..., m}},

where {F1, ..., Fm} is a subset of the (n
6) Pfaffian cubic polynomials defining

Sec(G(2, n)). The Pfaffians have 15 non-zero terms, which are square-free.
The number of non-zero terms of the shifted Pfaffians, in general, is variable.
Since the matrix MA is sparse, we expect that they are also sparse. In the
particular case when all the rows of MA have exactly two components
equal to 1, each shifted Pfaffian has several non-zero terms which are less
than or equal to 120 = 15 · 23. Therefore, it is expected that the size of the
public key in this case is around 120m bits.

6.5.3 Message size

If κ = F2` then the size of the message, which is a set of n− 2 hyperplanes
of P(n

2)−1, is (n
2) · (n− 2) bits.

6.5.4 Signature size

The signature is a point of P(n
2)−1 defined over κ, so it occupies ` ·

(
(n

2)− 1
)

bits.
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